1. Computational and Systems Biology
  2. Epidemiology and Global Health
Download icon

Plasma proteomic biomarker signature of age predicts health and life span

  1. Toshiko Tanaka  Is a corresponding author
  2. Nathan Basisty
  3. Giovanna Fantoni
  4. Julian Candia
  5. Ann Z Moore
  6. Angelique Bioancotto
  7. Birgit Schilling
  8. Stefania Bandinelli
  9. Luigi Ferrucci
  1. National Institute on Aging, NIH, United States
  2. Buck Institute for Research on Aging, United States
  3. National Cancer Institute, NIH, United States
  4. Sanofi, United States
  5. Azienda Sanitaria di Firenze, Italy
Research Article
  • Cited 0
  • Views 359
  • Annotations
Cite this article as: eLife 2020;9:e61073 doi: 10.7554/eLife.61073

Abstract

Older age is a strong shared risk factor for many chronic diseases and there is increasing interest in identifying aging biomarkers. Here a proteomic analysis of 1301 plasma proteins was conducted in 997 individuals between 21 and 102 years of age. We identified 651 proteins associated with age (506 over-represented, 145 underrepresented with age) was identified. Mediation analysis suggested a role for partial cis-epigenetic control of protein expression with age. Of the age-associated proteins, 33.5% and 45.3%, were associated with mortality and multimorbidity, respectively. There was enrichment of proteins associated with inflammation and extracellular matrix as well as senescence-associated secretory proteins. A 76-protein proteomic age signature predicted accumulation of chronic diseases and all-cause mortality. These data support the premise of proteomic biomarkers to monitor aging trajectories and to identify individuals at higher risk for disease to be targeted for in depth diagnostic procedures and early interventions.

Article and author information

Author details

  1. Toshiko Tanaka

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    For correspondence
    tanakato@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4161-3829
  2. Nathan Basisty

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Giovanna Fantoni

    Clinical Research Core, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Julian Candia

    Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5793-8989
  5. Ann Z Moore

    Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Angelique Bioancotto

    Immunology & Inflammation Research Therapeutic Area, Sanofi, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Birgit Schilling

    Buck Institute for Research on Aging, Novato, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9907-2749
  8. Stefania Bandinelli

    Geriatric Unit, Azienda Sanitaria di Firenze, Florence, Italy
    Competing interests
    The authors declare that no competing interests exist.
  9. Luigi Ferrucci

    Intramural Research Program, National Institute on Aging, NIH, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6273-1613

Funding

National Institutes of Health (U01 AG060906)

  • Birgit Schilling

National Institutes of Health (K99 AG065484)

  • Nathan Basisty

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study protocol (exemption #11976) was approved by the Italian National Institute of Research and Care of Aging Institutional Review and Medstar Research Institute (Baltimore, MD) and approved by the Internal Review Board of the National Institute for Environmental Health Sciences (NIEHS).

Reviewing Editor

  1. Sara Hägg, Karolinska Institutet, Sweden

Publication history

  1. Received: July 15, 2020
  2. Accepted: November 16, 2020
  3. Accepted Manuscript published: November 19, 2020 (version 1)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 359
    Page views
  • 103
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Antonio Cappuccio et al.
    Tools and Resources

    From cellular activation to drug combinations, immunological responses are shaped by the action of multiple stimuli. Synergistic and antagonistic interactions between stimuli play major roles in shaping immune processes. To understand combinatorial regulation, we present the immune Synergistic/Antagonistic Interaction Learner (iSAIL). iSAIL includes a machine learning classifier to map and interpret interactions, a curated compendium of immunological combination treatment datasets, and their global integration into a landscape of ~30,000 interactions. The landscape is mined to reveal combinatorial control of interleukins, checkpoints, and other immune modulators. The resource helps elucidate the modulation of a stimulus by interactions with other cofactors, showing that TNF has strikingly different effects depending on co-stimulators. We discover new functional synergies between TNF and IFNβ controlling dendritic cell-T cell crosstalk. Analysis of laboratory or public combination treatment studies with this user-friendly web-based resource will help resolve the complex role of interaction effects on immune processes.

    1. Computational and Systems Biology
    2. Neuroscience
    Richard Gao et al.
    Research Article

    Complex cognitive functions such as working memory and decision-making require information maintenance over seconds to years, from transient sensory stimuli to long-term contextual cues. While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal timescales, direct electrophysiological evidence across the human cortex is lacking. Here, we infer neuronal timescales from invasive intracranial recordings. Timescales increase along the principal sensorimotor-to-association axis across the entire human cortex, and scale with single-unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct alignment between timescales and expression of excitation- and inhibition-related genes, as well as genes specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are functionally dynamic: prefrontal cortex timescales expand during working memory maintenance and predict individual performance, while cortex-wide timescales compress with aging. Thus, neuronal timescales follow cytoarchitectonic gradients across the human cortex, and are relevant for cognition in both short- and long-terms, bridging microcircuit physiology with macroscale dynamics and behavior.