The biphasic and age-dependent impact of Klotho on hallmarks of aging and skeletal muscle function
Abstract
Aging is accompanied by disrupted information flow, resulting from accumulation of molecular mistakes. These mistakes ultimately give rise to debilitating disorders including skeletal muscle wasting, or sarcopenia. To derive a global metric of growing 'disorderliness' of aging muscle, we employed a statistical physics approach to estimate the state parameter, entropy, as a function of genes associated with hallmarks of aging. Escalating network entropy reached an inflection point at old age, while structural and functional alterations progressed into oldest-old age. To probe the potential for restoration of molecular 'order' and reversal of the sarcopenic phenotype, we systemically overexpressed the longevity protein, Klotho, via AAV. Klotho overexpression modulated genes representing all hallmarks of aging in old and oldest-old mice, but pathway enrichment revealed directions of changes were, for many genes, age-dependent. Functional improvements were also age-dependent. Klotho improved strength in old mice, but failed to induce benefits beyond the entropic tipping point.
Data availability
Sequencing data has been deposited in GEO accession: GSE156343.
-
The biphasic and age-dependent impact of Klotho on hallmarks of aging and skeletal muscle functionNCBI Gene Expression Omnibus, GSE156343.
-
Tabula Muris SenisNCBI Gene Expression Omnibus, GSE132040.
-
Skeletal Muscle Transcriptome in Healthy AgingNCBI Gene Expression Omnibus, GSE164471.
Article and author information
Author details
Funding
National Institute on Aging (R01AG052978)
- Fabrisia Ambrosio
National Institute on Aging (R01AG061005)
- Fabrisia Ambrosio
Boehringer Ingelheim
- Fabrisia Ambrosio
J.H., S.K. and M.F. are employees of Boehringer Ingelheim Pharmaceutical Company. They contributed to development, testing and validation of the AAV-Klotho vector, as well as the overall study design.
Ethics
Animal experimentation: All animal experiments were performed with prior approval from the Institutional Animal Care and Use Committee of the University of Pittsburgh. These experiments were conducted in accordance with protocol 17080802 (University of Pittsburgh ARO: IS00017744). All surgeries and invasive procedures were performed under isoflurane anesthesia, with painkillers administered afterwards. Every effort was made to minimize suffering.
Reviewing Editor
- Yousin Suh, Columbia University, United States
Version history
- Received: July 16, 2020
- Accepted: April 6, 2021
- Accepted Manuscript published: April 20, 2021 (version 1)
- Version of Record published: May 13, 2021 (version 2)
Copyright
© 2021, Clemens et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 4,355
- Page views
-
- 583
- Downloads
-
- 14
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
The maintenance of the functional integrity of the intestinal epithelium requires a tight coordination between cell production, migration and shedding along the crypt-villus axis. Dysregulation of these processes may result in loss of the intestinal barrier and disease. With the aim of generating a more complete and integrated understanding of how the epithelium maintains homeostasis and recovers after injury, we have built a multi-scale agent-based model (ABM) of the mouse intestinal epithelium. We demonstrate that stable, self-organizing behaviour in the crypt emerges from the dynamic interaction of multiple signalling pathways, such as Wnt, Notch, BMP, ZNRF3/RNF43 and YAP-Hippo pathways, which regulate proliferation and differentiation, respond to environmental mechanical cues, form feedback mechanisms and modulate the dynamics of the cell cycle protein network. The model recapitulates the crypt phenotype reported after persistent stem cell ablation and after the inhibition of the CDK1 cycle protein. Moreover, we simulated 5-fluorouracil (5-FU)-induced toxicity at multiple scales starting from DNA and RNA damage, which disrupts the cell cycle, cell signalling, proliferation, differentiation and migration and leads to loss of barrier integrity. During recovery, our in-silico crypt regenerates its structure in a self-organizing, dynamic fashion driven by dedifferentiation and enhanced by negative feedback loops. Thus, the model enables the simulation of xenobiotic-, in particular chemotherapy-, induced mechanisms of intestinal toxicity and epithelial recovery. Overall, we present a systems model able to simulate the disruption of molecular events and its impact across multiple levels of epithelial organization and demonstrate its application to epithelial research and drug development.
-
- Computational and Systems Biology
A deep analysis of multiple genomic datasets reveals which genetic pathways associated with atherosclerosis and coronary artery disease are shared between mice and humans.