A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch

  1. Hélène Duplus-Bottin
  2. Martin Spichty
  3. Gérard Triqueneaux
  4. Christophe Place
  5. Philippe Emmanuel Mangeot
  6. Théophile Ohlmann
  7. Franck Vittoz
  8. Gaël Yvert  Is a corresponding author
  1. CNRS and Ecole Normale Superieure de Lyon, France
  2. INSERM and Ecole Normale Superieure de Lyon, France

Abstract

Optogenetics enables genome manipulations with high spatiotemporal resolution, opening exciting possibilities for fundamental and applied biological research. Here, we report the development of LiCre, a novel light-inducible Cre recombinase. LiCre is made of a single flavin-containing protein comprising the AsLOV2 photoreceptor domain of Avena sativa fused to a Cre variant carrying destabilizing mutations in its N-terminal and C-terminal domains. LiCre can be activated within minutes of illumination with blue light, without the need of additional chemicals. When compared to existing photoactivatable Cre recombinases based on two split units, LiCre displayed faster and stronger activation by light as well as a lower residual activity in the dark. LiCre was efficient both in yeast, where it allowed us to control the production of β-carotene with light, and in human cells. Given its simplicity and performances, LiCre is particularly suited for fundamental and biomedical research, as well as for controlling industrial bioprocesses.

Data availability

Raw flow-cytometry data have been deposited in Biostudies under accession code S-BSST580. Processed data used for figures are included in the supporting files.

Article and author information

Author details

  1. Hélène Duplus-Bottin

    Laboratory of Biology and Modeling of the Cell, CNRS UMR5239, CNRS and Ecole Normale Superieure de Lyon, Lyon, France
    Competing interests
    Hélène Duplus-Bottin, A patent application covering LiCre and its potential applications has been filed. Ref: FR3079832 A1 and WO2019193205. Patent applicant: CNRS; inventors: Hélène Duplus-Bottin, Martin Spichty and Gaël Yvert..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2029-5646
  2. Martin Spichty

    Laboratory of Biology and Modeling of the Cell, CNRS UMR5239, CNRS and Ecole Normale Superieure de Lyon, Lyon, France
    Competing interests
    Martin Spichty, A patent application covering LiCre and its potential applications has been filed. Ref: FR3079832 A1 and WO2019193205. Patent applicant: CNRS; inventors: Hélène Duplus-Bottin, Martin Spichty and Gaël Yvert..
  3. Gérard Triqueneaux

    Laboratory of Biology and Modeling of the Cell, CNRS UMR5239, CNRS and Ecole Normale Superieure de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
  4. Christophe Place

    Laboratory of Physics, CNRS UMR5672, CNRS and Ecole Normale Superieure de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
  5. Philippe Emmanuel Mangeot

    CIRI-Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, INSERM and Ecole Normale Superieure de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
  6. Théophile Ohlmann

    CIRI-Centre International de Recherche en Infectiologie, Inserm U1111, CNRS UMR5308, INSERM and Ecole Normale Superieure de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
  7. Franck Vittoz

    Laboratory of Physics, CNRS UMR5672, CNRS and Ecole Normale Superieure de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
  8. Gaël Yvert

    Laboratory of Biology and Modeling of the Cell, CNRS UMR5239, CNRS and Ecole Normale Superieure de Lyon, Lyon, France
    For correspondence
    Gael.Yvert@ens-lyon.fr
    Competing interests
    Gaël Yvert, A patent application covering LiCre and its potential applications has been filed. Ref: FR3079832 A1 and WO2019193205. Patent applicant: CNRS; inventors: Hélène Duplus-Bottin, Martin Spichty and Gaël Yvert..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1955-4786

Funding

H2020 European Research Council (StG-281359 (SiGHT))

  • Gaël Yvert

Centre National de la Recherche Scientifique (MITI 80 Prime READGEN)

  • Gaël Yvert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Duplus-Bottin et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,156
    views
  • 840
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Hélène Duplus-Bottin
  2. Martin Spichty
  3. Gérard Triqueneaux
  4. Christophe Place
  5. Philippe Emmanuel Mangeot
  6. Théophile Ohlmann
  7. Franck Vittoz
  8. Gaël Yvert
(2021)
A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch
eLife 10:e61268.
https://doi.org/10.7554/eLife.61268

Share this article

https://doi.org/10.7554/eLife.61268

Further reading

    1. Biochemistry and Chemical Biology
    2. Stem Cells and Regenerative Medicine
    Alejandro J Brenes, Eva Griesser ... Angus I Lamond
    Research Article

    Human induced pluripotent stem cells (hiPSCs) have great potential to be used as alternatives to embryonic stem cells (hESCs) in regenerative medicine and disease modelling. In this study, we characterise the proteomes of multiple hiPSC and hESC lines derived from independent donors and find that while they express a near-identical set of proteins, they show consistent quantitative differences in the abundance of a subset of proteins. hiPSCs have increased total protein content, while maintaining a comparable cell cycle profile to hESCs, with increased abundance of cytoplasmic and mitochondrial proteins required to sustain high growth rates, including nutrient transporters and metabolic proteins. Prominent changes detected in proteins involved in mitochondrial metabolism correlated with enhanced mitochondrial potential, shown using high-resolution respirometry. hiPSCs also produced higher levels of secreted proteins, including growth factors and proteins involved in the inhibition of the immune system. The data indicate that reprogramming of fibroblasts to hiPSCs produces important differences in cytoplasmic and mitochondrial proteins compared to hESCs, with consequences affecting growth and metabolism. This study improves our understanding of the molecular differences between hiPSCs and hESCs, with implications for potential risks and benefits for their use in future disease modelling and therapeutic applications.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.