Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture

  1. Richard Gao  Is a corresponding author
  2. Ruud L van den Brink
  3. Thomas Pfeffer
  4. Bradley Voytek
  1. University of California, San Diego, United States
  2. University Medical Center Hamburg-Eppendorf, Germany

Abstract

Complex cognitive functions such as working memory and decision-making require information maintenance over seconds to years, from transient sensory stimuli to long-term contextual cues. While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal timescales, direct electrophysiological evidence across the human cortex is lacking. Here, we infer neuronal timescales from invasive intracranial recordings. Timescales increase along the principal sensorimotor-to-association axis across the entire human cortex, and scale with single-unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct alignment between timescales and expression of excitation- and inhibition-related genes, as well as genes specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are functionally dynamic: prefrontal cortex timescales expand during working memory maintenance and predict individual performance, while cortex-wide timescales compress with aging. Thus, neuronal timescales follow cytoarchitectonic gradients across the human cortex, and are relevant for cognition in both short- and long-terms, bridging microcircuit physiology with macroscale dynamics and behavior.

Data availability

All raw data are previously published and taken from publicly available repositories (see Table 1), all intermediate data produced from this manuscript are available on Github, with the associated analysis and visualization code

The following previously published data sets were used
    1. Frauscher et al
    (2018) MNI Open iEEG
    MNI, https://mni-open-ieegatlas.research.mcgill.ca/.
    1. Glasser et al
    (2016) Human Connectome Project S1200 Release
    HCP, https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release.
    1. Gryglewski et al
    (2018) Whole brain gene expression
    http://www.meduniwien.ac.at/neuroimaging/mRNA.html.

Article and author information

Author details

  1. Richard Gao

    Cognitive Science, University of California, San Diego, La Jolla, United States
    For correspondence
    r.dg.gao@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5916-6433
  2. Ruud L van den Brink

    Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3142-7248
  3. Thomas Pfeffer

    Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9561-3085
  4. Bradley Voytek

    Cognitive Science, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1640-2525

Funding

Natural Sciences and Engineering Research Council of Canada (CGSD3-488052-2016)

  • Richard Gao

Katzin Prize

  • Richard Gao

Alexander von Humboldt-Stiftung

  • Ruud L van den Brink

Alfred P. Sloan Foundation (FG-2015-66057)

  • Bradley Voytek

Whitehall Foundation (2017-12-73)

  • Bradley Voytek

National Science Foundation (BCS-1736028)

  • Bradley Voytek

National Institutes of Health (R01GM134363-01)

  • Bradley Voytek

Shiley-Marcos Alzheimer's Disease Research Center

  • Bradley Voytek

Halicioglu Data Science Institute Fellowship

  • Bradley Voytek

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Martin Vinck, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany

Version history

  1. Received: July 21, 2020
  2. Accepted: November 22, 2020
  3. Accepted Manuscript published: November 23, 2020 (version 1)
  4. Version of Record published: December 22, 2020 (version 2)

Copyright

© 2020, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,034
    views
  • 1,121
    downloads
  • 145
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Richard Gao
  2. Ruud L van den Brink
  3. Thomas Pfeffer
  4. Bradley Voytek
(2020)
Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture
eLife 9:e61277.
https://doi.org/10.7554/eLife.61277

Share this article

https://doi.org/10.7554/eLife.61277

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Gang Xue, Xiaoyi Zhang ... Zhiyuan Li
    Research Article

    Organisms utilize gene regulatory networks (GRN) to make fate decisions, but the regulatory mechanisms of transcription factors (TF) in GRNs are exceedingly intricate. A longstanding question in this field is how these tangled interactions synergistically contribute to decision-making procedures. To comprehensively understand the role of regulatory logic in cell fate decisions, we constructed a logic-incorporated GRN model and examined its behavior under two distinct driving forces (noise-driven and signal-driven). Under the noise-driven mode, we distilled the relationship among fate bias, regulatory logic, and noise profile. Under the signal-driven mode, we bridged regulatory logic and progression-accuracy trade-off, and uncovered distinctive trajectories of reprogramming influenced by logic motifs. In differentiation, we characterized a special logic-dependent priming stage by the solution landscape. Finally, we applied our findings to decipher three biological instances: hematopoiesis, embryogenesis, and trans-differentiation. Orthogonal to the classical analysis of expression profile, we harnessed noise patterns to construct the GRN corresponding to fate transition. Our work presents a generalizable framework for top-down fate-decision studies and a practical approach to the taxonomy of cell fate decisions.

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Weichen Song, Yongyong Shi, Guan Ning Lin
    Tools and Resources

    We propose a new framework for human genetic association studies: at each locus, a deep learning model (in this study, Sei) is used to calculate the functional genomic activity score for two haplotypes per individual. This score, defined as the Haplotype Function Score (HFS), replaces the original genotype in association studies. Applying the HFS framework to 14 complex traits in the UK Biobank, we identified 3619 independent HFS–trait associations with a significance of p < 5 × 10−8. Fine-mapping revealed 2699 causal associations, corresponding to a median increase of 63 causal findings per trait compared with single-nucleotide polymorphism (SNP)-based analysis. HFS-based enrichment analysis uncovered 727 pathway–trait associations and 153 tissue–trait associations with strong biological interpretability, including ‘circadian pathway-chronotype’ and ‘arachidonic acid-intelligence’. Lastly, we applied least absolute shrinkage and selection operator (LASSO) regression to integrate HFS prediction score with SNP-based polygenic risk scores, which showed an improvement of 16.1–39.8% in cross-ancestry polygenic prediction. We concluded that HFS is a promising strategy for understanding the genetic basis of human complex traits.