Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture
Abstract
Complex cognitive functions such as working memory and decision-making require information maintenance over seconds to years, from transient sensory stimuli to long-term contextual cues. While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal timescales, direct electrophysiological evidence across the human cortex is lacking. Here, we infer neuronal timescales from invasive intracranial recordings. Timescales increase along the principal sensorimotor-to-association axis across the entire human cortex, and scale with single-unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct alignment between timescales and expression of excitation- and inhibition-related genes, as well as genes specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are functionally dynamic: prefrontal cortex timescales expand during working memory maintenance and predict individual performance, while cortex-wide timescales compress with aging. Thus, neuronal timescales follow cytoarchitectonic gradients across the human cortex, and are relevant for cognition in both short- and long-terms, bridging microcircuit physiology with macroscale dynamics and behavior.
Data availability
All raw data are previously published and taken from publicly available repositories (see Table 1), all intermediate data produced from this manuscript are available on Github, with the associated analysis and visualization code
-
MNI Open iEEGMNI, https://mni-open-ieegatlas.research.mcgill.ca/.
-
Human Connectome Project S1200 ReleaseHCP, https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release.
-
Neurotycho Anesthesia and Sleep TaskNeurotycho, Anesthesia and Sleep.
-
Whole brain gene expressionhttp://www.meduniwien.ac.at/neuroimaging/mRNA.html.
Article and author information
Author details
Funding
Natural Sciences and Engineering Research Council of Canada (CGSD3-488052-2016)
- Richard Gao
Katzin Prize
- Richard Gao
Alexander von Humboldt-Stiftung
- Ruud L van den Brink
Alfred P. Sloan Foundation (FG-2015-66057)
- Bradley Voytek
Whitehall Foundation (2017-12-73)
- Bradley Voytek
National Science Foundation (BCS-1736028)
- Bradley Voytek
National Institutes of Health (R01GM134363-01)
- Bradley Voytek
Shiley-Marcos Alzheimer's Disease Research Center
- Bradley Voytek
Halicioglu Data Science Institute Fellowship
- Bradley Voytek
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Martin Vinck, Ernst Strüngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, Germany
Publication history
- Received: July 21, 2020
- Accepted: November 22, 2020
- Accepted Manuscript published: November 23, 2020 (version 1)
- Version of Record published: December 22, 2020 (version 2)
Copyright
© 2020, Gao et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 8,594
- Page views
-
- 975
- Downloads
-
- 62
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
Different strains of a microorganism growing in the same environment display a wide variety of growth rates and growth yields. We developed a coarse-grained model to test the hypothesis that different resource allocation strategies, corresponding to different compositions of the proteome, can account for the observed rate-yield variability. The model predictions were verified by means of a database of hundreds of published rate-yield and uptake-secretion phenotypes of Escherichia coli strains grown in standard laboratory conditions. We found a very good quantitative agreement between the range of predicted and observed growth rates, growth yields, and glucose uptake and acetate secretion rates. These results support the hypothesis that resource allocation is a major explanatory factor of the observed variability of growth rates and growth yields across different bacterial strains. An interesting prediction of our model, supported by the experimental data, is that high growth rates are not necessarily accompanied by low growth yields. The resource allocation strategies enabling high-rate, high-yield growth of E. coli lead to a higher saturation of enzymes and ribosomes, and thus to a more efficient utilization of proteomic resources. Our model thus contributes to a fundamental understanding of the quantitative relationship between rate and yield in E. coli and other microorganisms. It may also be useful for the rapid screening of strains in metabolic engineering and synthetic biology.
-
- Computational and Systems Biology
- Neuroscience
Biological motor control is versatile, efficient, and depends on proprioceptive feedback. Muscles are flexible and undergo continuous changes, requiring distributed adaptive control mechanisms that continuously account for the body's state. The canonical role of proprioception is representing the body state. We hypothesize that the proprioceptive system could also be critical for high-level tasks such as action recognition. To test this theory, we pursued a task-driven modeling approach, which allowed us to isolate the study of proprioception. We generated a large synthetic dataset of human arm trajectories tracing characters of the Latin alphabet in 3D space, together with muscle activities obtained from a musculoskeletal model and model-based muscle spindle activity. Next, we compared two classes of tasks: trajectory decoding and action recognition, which allowed us to train hierarchical models to decode either the position and velocity of the end-effector of one's posture or the character (action) identity from the spindle firing patterns. We found that artificial neural networks could robustly solve both tasks, and the networks'units show tuning properties similar to neurons in the primate somatosensory cortex and the brainstem. Remarkably, we found uniformly distributed directional selective units only with the action-recognition-trained models and not the trajectory-decoding-trained models. This suggests that proprioceptive encoding is additionally associated with higher-level functions such as action recognition and therefore provides new, experimentally testable hypotheses of how proprioception aids in adaptive motor control.