Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture
Abstract
Complex cognitive functions such as working memory and decision-making require information maintenance over seconds to years, from transient sensory stimuli to long-term contextual cues. While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal timescales, direct electrophysiological evidence across the human cortex is lacking. Here, we infer neuronal timescales from invasive intracranial recordings. Timescales increase along the principal sensorimotor-to-association axis across the entire human cortex, and scale with single-unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct alignment between timescales and expression of excitation- and inhibition-related genes, as well as genes specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are functionally dynamic: prefrontal cortex timescales expand during working memory maintenance and predict individual performance, while cortex-wide timescales compress with aging. Thus, neuronal timescales follow cytoarchitectonic gradients across the human cortex, and are relevant for cognition in both short- and long-terms, bridging microcircuit physiology with macroscale dynamics and behavior.
Data availability
All raw data are previously published and taken from publicly available repositories (see Table 1), all intermediate data produced from this manuscript are available on Github, with the associated analysis and visualization code
-
MNI Open iEEGMNI, https://mni-open-ieegatlas.research.mcgill.ca/.
-
Human Connectome Project S1200 ReleaseHCP, https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release.
-
Neurotycho Anesthesia and Sleep TaskNeurotycho, Anesthesia and Sleep.
-
Whole brain gene expressionhttp://www.meduniwien.ac.at/neuroimaging/mRNA.html.
Article and author information
Author details
Funding
Natural Sciences and Engineering Research Council of Canada (CGSD3-488052-2016)
- Richard Gao
Katzin Prize
- Richard Gao
Alexander von Humboldt-Stiftung
- Ruud L van den Brink
Alfred P. Sloan Foundation (FG-2015-66057)
- Bradley Voytek
Whitehall Foundation (2017-12-73)
- Bradley Voytek
National Science Foundation (BCS-1736028)
- Bradley Voytek
National Institutes of Health (R01GM134363-01)
- Bradley Voytek
Shiley-Marcos Alzheimer's Disease Research Center
- Bradley Voytek
Halicioglu Data Science Institute Fellowship
- Bradley Voytek
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Copyright
© 2020, Gao et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 183
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Computational and Systems Biology
- Neuroscience
Perception can be highly dependent on stimulus context, but whether and how sensory areas encode the context remains uncertain. We used an ambiguous auditory stimulus – a tritone pair – to investigate the neural activity associated with a preceding contextual stimulus that strongly influenced the tritone pair’s perception: either as an ascending or a descending step in pitch. We recorded single-unit responses from a population of auditory cortical cells in awake ferrets listening to the tritone pairs preceded by the contextual stimulus. We find that the responses adapt locally to the contextual stimulus, consistent with human MEG recordings from the auditory cortex under the same conditions. Decoding the population responses demonstrates that cells responding to pitch-changes are able to predict well the context-sensitive percept of the tritone pairs. Conversely, decoding the individual pitch representations and taking their distance in the circular Shepard tone space predicts the opposite of the percept. The various percepts can be readily captured and explained by a neural model of cortical activity based on populations of adapting, pitch and pitch-direction cells, aligned with the neurophysiological responses. Together, these decoding and model results suggest that contextual influences on perception may well be already encoded at the level of the primary sensory cortices, reflecting basic neural response properties commonly found in these areas.
-
- Computational and Systems Biology
- Neuroscience
Entorhinal grid cells implement a spatial code with hexagonal periodicity, signaling the position of the animal within an environment. Grid maps of cells belonging to the same module share spacing and orientation, only differing in relative two-dimensional spatial phase, which could result from being part of a two-dimensional attractor guided by path integration. However, this architecture has the drawbacks of being complex to construct and rigid, path integration allowing for no deviations from the hexagonal pattern such as the ones observed under a variety of experimental manipulations. Here, we show that a simpler one-dimensional attractor is enough to align grid cells equally well. Using topological data analysis, we show that the resulting population activity is a sample of a torus, while the ensemble of maps preserves features of the network architecture. The flexibility of this low dimensional attractor allows it to negotiate the geometry of the representation manifold with the feedforward inputs, rather than imposing it. More generally, our results represent a proof of principle against the intuition that the architecture and the representation manifold of an attractor are topological objects of the same dimensionality, with implications to the study of attractor networks across the brain.