Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture

  1. Richard Gao  Is a corresponding author
  2. Ruud L van den Brink
  3. Thomas Pfeffer
  4. Bradley Voytek
  1. University of California, San Diego, United States
  2. University Medical Center Hamburg-Eppendorf, Germany

Abstract

Complex cognitive functions such as working memory and decision-making require information maintenance over seconds to years, from transient sensory stimuli to long-term contextual cues. While theoretical accounts predict the emergence of a corresponding hierarchy of neuronal timescales, direct electrophysiological evidence across the human cortex is lacking. Here, we infer neuronal timescales from invasive intracranial recordings. Timescales increase along the principal sensorimotor-to-association axis across the entire human cortex, and scale with single-unit timescales within macaques. Cortex-wide transcriptomic analysis shows direct alignment between timescales and expression of excitation- and inhibition-related genes, as well as genes specific to voltage-gated transmembrane ion transporters. Finally, neuronal timescales are functionally dynamic: prefrontal cortex timescales expand during working memory maintenance and predict individual performance, while cortex-wide timescales compress with aging. Thus, neuronal timescales follow cytoarchitectonic gradients across the human cortex, and are relevant for cognition in both short- and long-terms, bridging microcircuit physiology with macroscale dynamics and behavior.

Data availability

All raw data are previously published and taken from publicly available repositories (see Table 1), all intermediate data produced from this manuscript are available on Github, with the associated analysis and visualization code

The following previously published data sets were used
    1. Frauscher et al
    (2018) MNI Open iEEG
    MNI, https://mni-open-ieegatlas.research.mcgill.ca/.
    1. Glasser et al
    (2016) Human Connectome Project S1200 Release
    HCP, https://www.humanconnectome.org/study/hcp-young-adult/document/1200-subjects-data-release.
    1. Gryglewski et al
    (2018) Whole brain gene expression
    http://www.meduniwien.ac.at/neuroimaging/mRNA.html.

Article and author information

Author details

  1. Richard Gao

    Cognitive Science, University of California, San Diego, La Jolla, United States
    For correspondence
    r.dg.gao@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5916-6433
  2. Ruud L van den Brink

    Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3142-7248
  3. Thomas Pfeffer

    Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9561-3085
  4. Bradley Voytek

    Cognitive Science, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1640-2525

Funding

Natural Sciences and Engineering Research Council of Canada (CGSD3-488052-2016)

  • Richard Gao

Katzin Prize

  • Richard Gao

Alexander von Humboldt-Stiftung

  • Ruud L van den Brink

Alfred P. Sloan Foundation (FG-2015-66057)

  • Bradley Voytek

Whitehall Foundation (2017-12-73)

  • Bradley Voytek

National Science Foundation (BCS-1736028)

  • Bradley Voytek

National Institutes of Health (R01GM134363-01)

  • Bradley Voytek

Shiley-Marcos Alzheimer's Disease Research Center

  • Bradley Voytek

Halicioglu Data Science Institute Fellowship

  • Bradley Voytek

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Gao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11,194
    views
  • 1,218
    downloads
  • 183
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Richard Gao
  2. Ruud L van den Brink
  3. Thomas Pfeffer
  4. Bradley Voytek
(2020)
Neuronal timescales are functionally dynamic and shaped by cortical microarchitecture
eLife 9:e61277.
https://doi.org/10.7554/eLife.61277

Share this article

https://doi.org/10.7554/eLife.61277

Further reading

    1. Computational and Systems Biology
    2. Physics of Living Systems
    Divyoj Singh, Sriram Ramaswamy ... Mohd Suhail Rizvi
    Research Article Updated

    Planar cell polarity (PCP) – tissue-scale alignment of the direction of asymmetric localization of proteins at the cell-cell interface – is essential for embryonic development and physiological functions. Abnormalities in PCP can result in developmental imperfections, including neural tube closure defects and misaligned hair follicles. Decoding the mechanisms responsible for PCP establishment and maintenance remains a fundamental open question. While the roles of various molecules – broadly classified into ‘global’ and ‘local’ modules – have been well-studied, their necessity and sufficiency in explaining PCP and connecting their perturbations to experimentally observed patterns have not been examined. Here, we develop a minimal model that captures the proposed features of PCP establishment – a global tissue-level gradient and local asymmetric distribution of protein complexes. The proposed model suggests that while polarity can emerge without a gradient, the gradient not only acts as a global cue but also increases the robustness of PCP against stochastic perturbations. We also recapitulated and quantified the experimentally observed features of swirling patterns and domineering non-autonomy, using only three free model parameters - rate of protein binding to membrane, the concentration of PCP proteins, and the gradient steepness. We explain how self-stabilizing asymmetric protein localizations in the presence of tissue-level gradient can lead to robust PCP patterns and reveal minimal design principles for a polarized system.

    1. Computational and Systems Biology
    2. Neuroscience
    Anna Cattani, Don B Arnold ... Nancy Kopell
    Research Article

    The basolateral amygdala (BLA) is a key site where fear learning takes place through synaptic plasticity. Rodent research shows prominent low theta (~3–6 Hz), high theta (~6–12 Hz), and gamma (>30 Hz) rhythms in the BLA local field potential recordings. However, it is not understood what role these rhythms play in supporting the plasticity. Here, we create a biophysically detailed model of the BLA circuit to show that several classes of interneurons (PV, SOM, and VIP) in the BLA can be critically involved in producing the rhythms; these rhythms promote the formation of a dedicated fear circuit shaped through spike-timing-dependent plasticity. Each class of interneurons is necessary for the plasticity. We find that the low theta rhythm is a biomarker of successful fear conditioning. The model makes use of interneurons commonly found in the cortex and, hence, may apply to a wide variety of associative learning situations.