Exceptional stability of a perilipin on lipid droplets depends on its polar residues, suggesting multimeric assembly

  1. Manuel Giménez-Andrés
  2. Tadej Emeršič
  3. Sandra Antoine-Bally
  4. Juan Martin D'Ambrosio
  5. Bruno Antonny
  6. Jure Derganc
  7. Alenka Čopič  Is a corresponding author
  1. CNRS, Universite de Paris, Universite Paris Saclay, France
  2. University of Ljubljana, Slovenia
  3. CNRS, Universite de Paris, France
  4. CNRS, University of Montpellier, France
  5. Université Côte d'Azur, France

Abstract

Numerous proteins target lipid droplets (LDs) through amphipathic helices (AHs). It is generally assumed that AHs insert bulky hydrophobic residues in packing defects at the LD surface. However, this model does not explain the targeting of perilipins, the most abundant and specific amphipathic proteins of LDs, which are weakly hydrophobic. A striking example is Plin4, whose gigantic and repetitive AH lacks bulky hydrophobic residues. Using a range of complementary approaches, we show that Plin4 forms a remarkably immobile and stable protein layer at the surface of cellular or in vitro generated oil droplets, and decreases LD size. Plin4 AH stability on LDs is exquisitely sensitive to the nature and distribution of its polar residues. These results suggest that Plin4 forms stable arrangements of adjacent AHs via polar/electrostatic interactions, reminiscent of the organization of apolipoproteins in lipoprotein particles, thus pointing to a general mechanism of AH stabilization via lateral interactions.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 to 8.

Article and author information

Author details

  1. Manuel Giménez-Andrés

    Institut Jacques Monod, CNRS, Universite de Paris, Universite Paris Saclay, Paris CEDEX13, France
    Competing interests
    The authors declare that no competing interests exist.
  2. Tadej Emeršič

    Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
    Competing interests
    The authors declare that no competing interests exist.
  3. Sandra Antoine-Bally

    Institut Jacques Monod, CNRS, Universite de Paris, Paris CEDEX13, France
    Competing interests
    The authors declare that no competing interests exist.
  4. Juan Martin D'Ambrosio

    CRBM, CNRS, University of Montpellier, Montpellier, France
    Competing interests
    The authors declare that no competing interests exist.
  5. Bruno Antonny

    CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur, Valbonne, France
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9166-8668
  6. Jure Derganc

    Institute of Biophysics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
    Competing interests
    The authors declare that no competing interests exist.
  7. Alenka Čopič

    Institut Jacques Monod, CNRS, Universite de Paris, Paris CEDEX13, France
    For correspondence
    alenka.copic@crbm.cnrs.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0166-7731

Funding

CNRS (CNRS-PICS No 214454)

  • Alenka Čopič

Slovenian Research Agency (No. P1-0055)

  • Jure Derganc

Ministere de l'Education National, de l'Enseignement Superieur de la Recherche

  • Manuel Giménez-Andrés

Fondation ARC pour la Recherche sur le Cancer (DOC20190509052)

  • Manuel Giménez-Andrés

European Research Council (Synergy #856404)

  • Bruno Antonny
  • Alenka Čopič

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Giménez-Andrés et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,119
    views
  • 311
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Manuel Giménez-Andrés
  2. Tadej Emeršič
  3. Sandra Antoine-Bally
  4. Juan Martin D'Ambrosio
  5. Bruno Antonny
  6. Jure Derganc
  7. Alenka Čopič
(2021)
Exceptional stability of a perilipin on lipid droplets depends on its polar residues, suggesting multimeric assembly
eLife 10:e61401.
https://doi.org/10.7554/eLife.61401

Share this article

https://doi.org/10.7554/eLife.61401

Further reading

    1. Cell Biology
    Kaima Tsukada, Rikiya Imamura ... Mikio Shimada
    Research Article

    Polynucleotide kinase phosphatase (PNKP) has enzymatic activities as 3′-phosphatase and 5′-kinase of DNA ends to promote DNA ligation and repair. Here, we show that cyclin-dependent kinases (CDKs) regulate the phosphorylation of threonine 118 (T118) in PNKP. This phosphorylation allows recruitment to the gapped DNA structure found in single-strand DNA (ssDNA) nicks and/or gaps between Okazaki fragments (OFs) during DNA replication. T118A (alanine)-substituted PNKP-expressing cells exhibited an accumulation of ssDNA gaps in S phase and accelerated replication fork progression. Furthermore, PNKP is involved in poly (ADP-ribose) polymerase 1 (PARP1)-dependent replication gap filling as part of a backup pathway in the absence of OFs ligation. Altogether, our data suggest that CDK-mediated PNKP phosphorylation at T118 is important for its recruitment to ssDNA gaps to proceed with OFs ligation and its backup repairs via the gap-filling pathway to maintain genome stability.

    1. Cell Biology
    2. Neuroscience
    Vibhavari Aysha Bansal, Jia Min Tan ... Toh Hean Ch'ng
    Research Article

    The emergence of Aβ pathology is one of the hallmarks of Alzheimer’s disease (AD), but the mechanisms and impact of Aβ in progression of the disease is unclear. The nuclear pore complex (NPC) is a multi-protein assembly in mammalian cells that regulates movement of macromolecules across the nuclear envelope; its function is shown to undergo age-dependent decline during normal aging and is also impaired in multiple neurodegenerative disorders. Yet not much is known about the impact of Aβ on NPC function in neurons. Here, we examined NPC and nucleoporin (NUP) distribution and nucleocytoplasmic transport using a mouse model of AD (AppNL-G-F/NL-G-F) that expresses Aβ in young animals. Our studies revealed that a time-dependent accumulation of intracellular Aβ corresponded with a reduction of NPCs and NUPs in the nuclear envelope which resulted in the degradation of the permeability barrier and inefficient segregation of nucleocytoplasmic proteins, and active transport. As a result of the NPC dysfunction App KI neurons become more vulnerable to inflammation-induced necroptosis – a programmed cell death pathway where the core components are activated via phosphorylation through nucleocytoplasmic shutting. Collectively, our data implicates Aβ in progressive impairment of nuclear pore function and further confirms that the protein complex is vulnerable to disruption in various neurodegenerative diseases and is a potential therapeutic target.