1. Developmental Biology
  2. Genetics and Genomics
Download icon

Somatic aging pathways regulate reproductive plasticity in Caenorhabditis elegans

  1. Maria C Ow
  2. Alexandra M Nichitean
  3. Sarah E Hall  Is a corresponding author
  1. Syracuse University, United States
Research Article
  • Cited 0
  • Views 968
  • Annotations
Cite this article as: eLife 2021;10:e61459 doi: 10.7554/eLife.61459


In animals, early-life stress can result in programmed changes in gene expression that can affect their adult phenotype. In C. elegans nematodes, starvation during the first larval stage promotes entry into a stress-resistant dauer stage until environmental conditions improve. Adults that have experienced dauer (postdauers) retain a memory of early-life starvation that results in gene expression changes and reduced fecundity. Here we show that the endocrine pathways attributed to the regulation of somatic aging in C. elegans adults lacking a functional germline also regulate the reproductive phenotypes of postdauer adults that experienced early-life starvation. We demonstrate that postdauer adults reallocate fat to benefit progeny at the expense of the parental somatic fat reservoir and exhibit increased longevity compared to controls. Our results also show that the modification of somatic fat stores due to parental starvation memory is inherited in the F1 generation and may be the result of crosstalk between somatic and reproductive tissues mediated by the germline nuclear RNAi pathway.

Data availability

All data generated or analyzed during this study are included in source files associated with relevant figures.

Article and author information

Author details

  1. Maria C Ow

    Department of Biology, Syracuse University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Alexandra M Nichitean

    Department of Biology, Syracuse University, Syracuse, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarah E Hall

    Department of Biology, Syracuse University, Syracuse, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8536-4000


National Institutes of Health (R01GM129135)

  • Sarah E Hall

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. John K Kim, Johns Hopkins University, United States

Publication history

  1. Preprint posted: June 18, 2019 (view preprint)
  2. Received: July 26, 2020
  3. Accepted: June 26, 2021
  4. Accepted Manuscript published: July 8, 2021 (version 1)
  5. Version of Record published: July 20, 2021 (version 2)


© 2021, Ow et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 968
    Page views
  • 178
  • 0

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Developmental Biology
    2. Neuroscience
    Meike E van der Heijden et al.
    Research Article

    Preterm infants that suffer cerebellar insults often develop motor disorders and cognitive difficulty. Excitatory granule cells, the most numerous neuron type in the brain, are especially vulnerable and likely instigate disease by impairing the function of their targets, the Purkinje cells. Here, we use regional genetic manipulations and in vivo electrophysiology to test whether excitatory neurons establish the firing properties of Purkinje cells during postnatal mouse development. We generated mutant mice that lack the majority of excitatory cerebellar neurons and tracked the structural and functional consequences on Purkinje cells. We reveal that Purkinje cells fail to acquire their typical morphology and connectivity, and that the concomitant transformation of Purkinje cell firing activity does not occur either. We also show that our mutant pups have impaired motor behaviors and vocal skills. These data argue that excitatory cerebellar neurons define the maturation time-window for postnatal Purkinje cell functions and refine cerebellar-dependent behaviors.

    1. Developmental Biology
    2. Neuroscience
    Baruch Haimson et al.
    Research Article Updated

    Peripheral and intraspinal feedback is required to shape and update the output of spinal networks that execute motor behavior. We report that lumbar dI2 spinal interneurons in chicks receive synaptic input from afferents and premotor neurons. These interneurons innervate contralateral premotor networks in the lumbar and brachial spinal cord, and their ascending projections innervate the cerebellum. These findings suggest that dI2 neurons function as interneurons in local lumbar circuits, are involved in lumbo-brachial coupling, and that part of them deliver peripheral and intraspinal feedback to the cerebellum. Silencing of dI2 neurons leads to destabilized stepping in posthatching day 8 hatchlings, with occasional collapses, variable step profiles, and a wide-base walking gait, suggesting that dI2 neurons may contribute to the stabilization of the bipedal gait.