Abstract

The yeast THO complex is recruited to active genes and interacts with the RNA-dependent ATPase Sub2 to facilitate the formation of mature export-competent mRNPs and to prevent the co-transcriptional formation of RNA:DNA-hybrid-containing structures. How THO-containing complexes function at the mechanistic level is unclear. Here, we elucidated a 3.4Å resolution structure of S. cerevisiae THO-Sub2 by cryo-electron microscopy. THO subunits Tho2 and Hpr1 intertwine to form a platform that is bound by Mft1, Thp2, and Tex1. The resulting complex homodimerizes in an asymmetric fashion, with a Sub2 molecule attached to each protomer. The homodimerization interfaces serve as a fulcrum for a seesaw-like movement concomitant with conformational changes of the Sub2 ATPase. The overall structural architecture and topology suggest the molecular mechanisms of nucleic acid remodeling during mRNA biogenesis.

Data availability

Cryo-EM maps are available in the Electron Microscopy Data Bank (11859 and 11871). Atomic models are available in the Protein Data Bank (7APX and 7AQO).

The following data sets were generated

Article and author information

Author details

  1. Sandra K Schuller

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1800-8014
  2. Jan M Schuller

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9121-1764
  3. Jesuraj R Prabu

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Marc Baumgärtner

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Fabien Bonneau

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8787-7662
  6. Jérôme Basquin

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Martinsried, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Elena Conti

    Department of Structural Cell Biology, Max Planck Institute of Biochemistry, Munich, Germany
    For correspondence
    conti@biochem.mpg.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1254-5588

Funding

European Commission (EXORICO)

  • Elena Conti

Deutsche Forschungsgemeinschaft (201302640)

  • Elena Conti

Deutsche Forschungsgemeinschaft (369799452)

  • Elena Conti

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karsten Weis, ETH Zurich, Switzerland

Version history

  1. Received: July 27, 2020
  2. Accepted: November 13, 2020
  3. Accepted Manuscript published: November 16, 2020 (version 1)
  4. Version of Record published: December 16, 2020 (version 2)
  5. Version of Record updated: November 15, 2023 (version 3)

Copyright

© 2020, Schuller et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,441
    Page views
  • 345
    Downloads
  • 16
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sandra K Schuller
  2. Jan M Schuller
  3. Jesuraj R Prabu
  4. Marc Baumgärtner
  5. Fabien Bonneau
  6. Jérôme Basquin
  7. Elena Conti
(2020)
Structural insights into the nucleic acid remodeling mechanisms of the yeast THO-Sub2 complex
eLife 9:e61467.
https://doi.org/10.7554/eLife.61467

Share this article

https://doi.org/10.7554/eLife.61467

Further reading

    1. Structural Biology and Molecular Biophysics
    Parameswaran Hariharan, Yuqi Shi ... Lan Guan
    Research Article

    While many 3D structures of cation-coupled transporters have been determined, the mechanistic details governing the obligatory coupling and functional regulations still remain elusive. The bacterial melibiose transporter (MelB) is a prototype of major facilitator superfamily transporters. With a conformation-selective nanobody, we determined a low-sugar affinity inward-facing Na+-bound cryoEM structure. The available outward-facing sugar-bound structures showed that the N- and C-terminal residues of the inner barrier contribute to the sugar selectivity. The inward-open conformation shows that the sugar selectivity pocket is also broken when the inner barrier is broken. Isothermal titration calorimetry measurements revealed that this inward-facing conformation trapped by this nanobody exhibited a greatly decreased sugar-binding affinity, suggesting the mechanisms for substrate intracellular release and accumulation. While the inner/outer barrier shift directly regulates the sugar-binding affinity, it has little or no effect on the cation binding, which is supported by molecular dynamics simulations. Furthermore, the hydron/deuterium exchange mass spectrometry analyses allowed us to identify dynamic regions; some regions are involved in the functionally important inner barrier-specific salt-bridge network, which indicates their critical roles in the barrier switching mechanisms for transport. These complementary results provided structural and dynamic insights into the mobile barrier mechanism for cation-coupled symport.

    1. Structural Biology and Molecular Biophysics
    Fouad Ouasti, Maxime Audin ... Francoise Ochsenbein
    Research Article

    Genome and epigenome integrity in eukaryotes depends on the proper coupling of histone deposition with DNA synthesis. This process relies on the evolutionary conserved histone chaperone CAF-1 for which the links between structure and functions are still a puzzle. While studies of the Saccharomyces cerevisiae CAF-1 complex enabled to propose a model for the histone deposition mechanism, we still lack a framework to demonstrate its generality and in particular, how its interaction with the polymerase accessory factor PCNA is operating. Here, we reconstituted a complete SpCAF-1 from fission yeast. We characterized its dynamic structure using NMR, SAXS and molecular modeling together with in vitro and in vivo functional studies on rationally designed interaction mutants. Importantly, we identify the unfolded nature of the acidic domain which folds up when binding to histones. We also show how the long KER helix mediates DNA binding and stimulates SpCAF-1 association with PCNA. Our study highlights how the organization of CAF-1 comprising both disordered regions and folded modules enables the dynamics of multiple interactions to promote synthesis-coupled histone deposition essential for its DNA replication, heterochromatin maintenance, and genome stability functions.