1. Chromosomes and Gene Expression
  2. Structural Biology and Molecular Biophysics
Download icon

Structure of the human core transcription-export complex reveals a hub for multivalent interactions

  1. Thomas Pühringer
  2. Ulrich Hohmann
  3. Laura Fin
  4. Belén Pacheco-Fiallos
  5. Ulla Schellhaas
  6. Julius Brennecke
  7. Clemens Plaschka  Is a corresponding author
  1. Research Institute of Molecular Pathology (IMP), Austria
  2. Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Austria
Research Article
  • Cited 0
  • Views 1,563
  • Annotations
Cite this article as: eLife 2020;9:e61503 doi: 10.7554/eLife.61503

Abstract

The export of mRNA from nucleus to cytoplasm requires the conserved and essential transcription and export (TREX) complex (THO–UAP56/DDX39B–ALYREF). TREX selectively binds mRNA maturation marks and licenses mRNA for nuclear export by loading the export factor NXF1–NXT1. How TREX integrates these marks and achieves high selectivity for mature mRNA is poorly understood. Here we report the cryo-electron microscopy structure of the human THO–UAP56/DDX39B complex at 3.3 Å resolution. The seven-subunit THO–UAP56/DDX39B complex multimerizes into a 28-subunit tetrameric assembly, suggesting that selective recognition of mature mRNA is facilitated by the simultaneous sensing of multiple, spatially distant mRNA regions and maturation marks. Two UAP56/DDX39B RNA helicases are juxtaposed at each end of the tetramer, which would allow one bivalent ALYREF protein to bridge adjacent helicases and regulate the TREX–mRNA interaction. Our structural and biochemical results suggest a conserved model for TREX complex function that depends on multivalent interactions between proteins and mRNA.

Article and author information

Author details

  1. Thomas Pühringer

    Research Institute of Molecular Pathology (IMP), Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9127-9120
  2. Ulrich Hohmann

    Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2124-1439
  3. Laura Fin

    Research Institute of Molecular Pathology (IMP), Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  4. Belén Pacheco-Fiallos

    Research Institute of Molecular Pathology (IMP), Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  5. Ulla Schellhaas

    Research Institute of Molecular Pathology (IMP), Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9684-9839
  6. Julius Brennecke

    Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna, Austria
    Competing interests
    The authors declare that no competing interests exist.
  7. Clemens Plaschka

    Research Institute of Molecular Pathology (IMP), Vienna, Austria
    For correspondence
    clemens.plaschka@imp.ac.at
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6020-9514

Funding

Boehringer Ingelheim

  • Clemens Plaschka

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (P2GEP3_188343)

  • Ulrich Hohmann

H2020 European Research Council (ERC-2015-CoG 682181)

  • Julius Brennecke

Austrian Science Fund (F4303 and W1207)

  • Julius Brennecke

Österreichischen Akademie der Wissenschaften

  • Julius Brennecke

H2020 European Research Council (ERC-2020-STG 949081)

  • Clemens Plaschka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Karsten Weis, ETH Zurich, Switzerland

Publication history

  1. Received: July 28, 2020
  2. Accepted: November 13, 2020
  3. Accepted Manuscript published: November 16, 2020 (version 1)

Copyright

© 2020, Pühringer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,563
    Page views
  • 358
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    Shanaya Shital Shah et al.
    Tools and Resources Updated

    Displacement loops (D-loops) are signature intermediates formed during homologous recombination. Numerous factors regulate D-loop formation and disruption, thereby influencing crucial aspects of DNA repair, including donor choice and the possibility of crossover outcome. While D-loop detection methods exist, it is currently unfeasible to assess the relationship between D-loop editors and D-loop characteristics such as length and position. Here, we developed a novel in vitro assay to characterize the length and position of individual D-loops with near base-pair resolution and deep coverage, while also revealing their distribution in a population. Non-denaturing bisulfite treatment modifies the cytosines on the displaced strand of the D-loop to uracil, leaving a permanent signature for the displaced strand. Subsequent single-molecule real-time sequencing uncovers the cytosine conversion patch as a D-loop footprint. The D-loop Mapping Assay is widely applicable with different substrates and donor types and can be used to study factors that influence D-loop properties.

    1. Chromosomes and Gene Expression
    Shanaya Shital Shah et al.
    Research Article Updated

    Displacement loops (D-loops) are critical intermediates formed during homologous recombination. Rdh54 (a.k.a. Tid1), a Rad54 paralog in Saccharomyces cerevisiae, is well-known for its role with Dmc1 recombinase during meiotic recombination. Yet contrary to Dmc1, Rdh54/Tid1 is also present in somatic cells where its function is less understood. While Rdh54/Tid1 enhances the Rad51 DNA strand invasion activity in vitro, it is unclear how it interplays with Rad54. Here, we show that Rdh54/Tid1 inhibits D-loop formation by Rad51 and Rad54 in an ATPase-independent manner. Using a novel D-loop Mapping Assay, we further demonstrate that Rdh54/Tid1 uniquely restricts the length of Rad51-Rad54-mediated D-loops. The alterations in D-loop properties appear to be important for cell survival and mating-type switch in haploid yeast. We propose that Rdh54/Tid1 and Rad54 compete for potential binding sites within the Rad51 filament, where Rdh54/Tid1 acts as a physical roadblock to Rad54 translocation, limiting D-loop formation and D-loop length.