Physically asymmetric division of the C. elegans zygote ensures invariably successful embryogenesis

  1. Radek Jankele
  2. Rob Jelier
  3. Pierre Gönczy  Is a corresponding author
  1. Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland
  2. Katholieke Universiteit Leuven, Belgium

Abstract

Asymmetric divisions that yield daughter cells of different sizes are frequent during early embryogenesis, but the importance of such a physical difference for successful development remains poorly understood. Here, we investigated this question using the first division of C. elegans embryos, which yields a large AB cell and a small P1 cell. We equalized AB and P1 sizes using acute genetic inactivation or optogenetic manipulation of the spindle positioning protein LIN-5. We uncovered that only some embryos tolerated equalization, and that there was a size asymmetry threshold for viability. Cell lineage analysis of equalized embryos revealed an array of defects, including faster cell cycle progression in P1 descendants, as well as defects in cell positioning, division orientation and cell fate. Moreover, equalized embryos were more susceptible to external compression. Overall, we conclude that unequal first cleavage is essential for invariably successful embryonic development of C. elegans.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.Source data files and code have been provided as individual files for: Figure 1 - supplement 1-3, Figures 2, Figure 2 - supplement 1, Figure 5, Figure 5 - supplement 1, and Figure 6 - supplement 1.Further, the lineaging data, as well as the source code used for their analysis, are available from GitHub: https://github.com/UPGON/worm-rules-eLifeThese include code and source data for Figures 3, 4, and 6, and accompanying supplements, as well as for Figure 6 - supplement 2 and 3). Results of the statistical tests are reported in Supplementary File 6

The following data sets were generated

Article and author information

Author details

  1. Radek Jankele

    Swiss Institute for Experimental Cancer Research, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  2. Rob Jelier

    Centre of Microbial and Plant Genetics, Katholieke Universiteit Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  3. Pierre Gönczy

    Swiss Institute of Experimental Cancer Research, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
    For correspondence
    pierre.gonczy@epfl.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6305-6883

Funding

Swiss National Science Foundation (31003A_155942)

  • Radek Jankele
  • Pierre Gönczy

Research Foundation Flanders (G055017N)

  • Rob Jelier

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael B Eisen, University of California, Berkeley, United States

Publication history

  1. Received: August 3, 2020
  2. Accepted: February 22, 2021
  3. Accepted Manuscript published: February 23, 2021 (version 1)
  4. Accepted Manuscript updated: February 25, 2021 (version 2)
  5. Version of Record published: March 18, 2021 (version 3)

Copyright

© 2021, Jankele et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,617
    Page views
  • 354
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Radek Jankele
  2. Rob Jelier
  3. Pierre Gönczy
(2021)
Physically asymmetric division of the C. elegans zygote ensures invariably successful embryogenesis
eLife 10:e61714.
https://doi.org/10.7554/eLife.61714

Further reading

    1. Cell Biology
    2. Genetics and Genomics
    Sumedha Dahal, Humaira Siddiqua ... Sathees C Raghavan
    Research Article Updated

    Having its genome makes the mitochondrion a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is a double-stranded closed circular molecule of about 16 kb coding for 37 genes. Mutations, including deletions in the mitochondrial genome, can culminate in different human diseases. Mapping the deletion junctions suggests that the breakpoints are generally seen at hotspots. ‘9 bp deletion’ (8271–8281), seen in the intergenic region of cytochrome c oxidase II/tRNALys, is the most common mitochondrial deletion. While it is associated with several diseases like myopathy, dystonia, and hepatocellular carcinoma, it has also been used as an evolutionary marker. However, the mechanism responsible for its fragility is unclear. In the current study, we show that Endonuclease G, a mitochondrial nuclease responsible for nonspecific cleavage of nuclear DNA during apoptosis, can induce breaks at sequences associated with ‘9 bp deletion’ when it is present on a plasmid or in the mitochondrial genome. Through a series of in vitro and intracellular studies, we show that Endonuclease G binds to G-quadruplex structures formed at the hotspot and induces DNA breaks. Therefore, we uncover a new role for Endonuclease G in generating mtDNA deletions, which depends on the formation of G4 DNA within the mitochondrial genome. In summary, we identify a novel property of Endonuclease G, besides its role in apoptosis and the recently described ‘elimination of paternal mitochondria during fertilisation.

    1. Cell Biology
    Amanda E Brandon, Lewin Small ... Gregory J Cooney
    Research Article Updated

    Obesity is generally associated with insulin resistance in liver and muscle and increased risk of developing type 2 diabetes, however there is a population of obese people that remain insulin sensitive. Similarly, recent work suggests that mice fed high carbohydrate diets can become obese without apparent glucose intolerance. To investigate this phenomenon further, we fed mice either a high fat (Hi-F) or high starch (Hi-ST) diet and measured adiposity, glucose tolerance, insulin sensitivity, and tissue lipids compared to control mice fed a standard laboratory chow. Both Hi-ST and Hi-F mice accumulated a similar amount of fat and tissue triglyceride compared to chow-fed mice. However, while Hi-F diet mice developed glucose intolerance as well as liver and muscle insulin resistance (assessed via euglycaemic/hyperinsulinaemic clamp), obese Hi-ST mice maintained glucose tolerance and insulin action similar to lean, chow-fed controls. This preservation of insulin action despite obesity in Hi-ST mice was associated with differences in de novo lipogenesis and levels of C22:0 ceramide in liver and C18:0 ceramide in muscle. This indicates that dietary manipulation can influence insulin action independently of the level of adiposity and that the presence of specific ceramide species correlates with these differences.