1. Cell Biology
  2. Developmental Biology
Download icon

The ESCRT Machinery regulates Retromer dependent Transcytosis of Septate Junction Components in Drosophila

  1. Hendrik Pannen
  2. Tim Rapp
  3. Thomas Klein  Is a corresponding author
  1. Heinrich-Heine-Universität Düsseldorf, Germany
Research Article
  • Cited 0
  • Views 257
  • Annotations
Cite this article as: eLife 2020;9:e61866 doi: 10.7554/eLife.61866

Abstract

Loss of ESCRT function in Drosophila imaginal discs is known to cause neoplastic overgrowth fuelled by mis-regulation of signalling pathways. Its impact on junctional integrity, however, remains obscure. To dissect the events leading to neoplasia, we used transmission electron microscopy (TEM) on wing imaginal discs temporally depleted of the ESCRT-III core component Shrub. We find a specific requirement for Shrub in maintaining Septate Junction (SJ) integrity by transporting the Claudin Megatrachea (Mega) to the SJ. In absence of Shrub function, Mega is lost from the SJ and becomes trapped on endosomes coated with the endosomal retrieval machinery Retromer. We show that ESCRT function is required for apical localization and mobility of Retromer positive carrier vesicles, which mediate the biosynthetic delivery of Mega to the SJ. Accordingly, loss of Retromer function impairs the anterograde transport of several SJ core components, revealing a novel physiological role for this ancient endosomal agent.

Article and author information

Author details

  1. Hendrik Pannen

    Institute of Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Tim Rapp

    Institute of Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Thomas Klein

    Institute of Genetics, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
    For correspondence
    thomas.klein@hhu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2719-9617

Funding

Deutsche Forschungsgemeinschaft (Sachbeihilfe KL 1028/11-1)

  • Hendrik Pannen
  • Tim Rapp
  • Thomas Klein

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Elisabeth Knust, Max-Planck Institute of Molecular Cell Biology and Genetics, Germany

Publication history

  1. Received: August 6, 2020
  2. Accepted: December 29, 2020
  3. Accepted Manuscript published: December 30, 2020 (version 1)

Copyright

© 2020, Pannen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 257
    Page views
  • 62
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Salah A Baker et al.
    Research Article Updated

    Interstitial cells of Cajal (ICC) generate pacemaker activity responsible for phasic contractions in colonic segmentation and peristalsis. ICC along the submucosal border (ICC-SM) contribute to mixing and more complex patterns of colonic motility. We show the complex patterns of Ca2+ signaling in ICC-SM and the relationship between ICC-SM Ca2+ transients and activation of smooth muscle cells (SMCs) using optogenetic tools. ICC-SM displayed rhythmic firing of Ca2+transients ~ 15 cpm and paced adjacent SMCs. The majority of spontaneous activity occurred in regular Ca2+ transients clusters (CTCs) that propagated through the network. CTCs were organized and dependent upon Ca2+ entry through voltage-dependent Ca2+ conductances, L- and T-type Ca2+ channels. Removal of Ca2+ from the external solution abolished CTCs. Ca2+ release mechanisms reduced the duration and amplitude of Ca2+ transients but did not block CTCs. These data reveal how colonic pacemaker ICC-SM exhibit complex Ca2+-firing patterns and drive smooth muscle activity and overall colonic contractions.

    1. Cell Biology
    Alexander J Sercel et al.
    Tools and Resources

    Generating mammalian cells with specific mtDNA-nDNA combinations is desirable but difficult to achieve and would be enabling for studies of mitochondrial-nuclear communication and coordination in controlling cell fates and functions. We developed 'MitoPunch', a pressure-driven mitochondrial transfer device, to deliver isolated mitochondria into numerous target mammalian cells simultaneously. MitoPunch and MitoCeption, a previously described force-based mitochondrial transfer approach, both yield stable isolated mitochondrial recipient (SIMR) cells that permanently retain exogenous mtDNA, whereas coincubation of mitochondria with cells does not yield SIMR cells. Although a typical MitoPunch or MitoCeption delivery results in dozens of immortalized SIMR clones with restored oxidative phosphorylation, only MitoPunch can produce replication-limited, non-immortal human SIMR clones. The MitoPunch device is versatile, inexpensive to assemble, and easy to use for engineering mtDNA-nDNA combinations to enable fundamental studies and potential translational applications.