1. Cell Biology
  2. Structural Biology and Molecular Biophysics
Download icon

3D in situ imaging of female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice

  1. Lukas Ded
  2. Jae Yeon Hwang
  3. Kiyoshi Miki
  4. Huanan F Shi
  5. Jean-Ju Chung  Is a corresponding author
  1. IBT CAS and BIOCEV centre, Czech Republic
  2. Yale School of Medicine, United States
  3. Howard Hughes Medical Institute, Boston Children's Hospital, United States
  4. Baylor College of Medicine, United States
Research Article
  • Cited 9
  • Views 3,109
  • Annotations
Cite this article as: eLife 2020;9:e62043 doi: 10.7554/eLife.62043


Out of millions of ejaculated sperm, only a few reach the fertilization site in mammals. Flagellar Ca2+ signaling nanodomains, organized by multi-subunit CatSper calcium channel complexes, are pivotal for sperm migration in the female tract, implicating CatSper-dependent mechanisms in sperm selection. Here, using biochemical and pharmacological studies, we demonstrate that CatSper1 is an O-linked glycosylated protein, undergoing capacitation-induced processing dependent on Ca2+ and phosphorylation cascades. CatSper1 processing correlates with protein tyrosine phosphorylation (pY) development in sperm cells capacitated in vitro and in vivo. Using 3D in situ molecular imaging and ANN-based automatic detection of sperm distributed along the cleared female tract, we demonstrate that all spermatozoa past the UTJ possess intact CatSper1 signals. Together, we reveal that fertilizing mouse spermatozoa in situ are characterized by intact CatSper channel, lack of pY, and reacted acrosomes. These findings provide molecular insight into sperm selection for successful fertilization in the female reproductive tract.

Data availability

All data generated or analysed during this study are included in the manuscript, supplementary and source data files.

Article and author information

Author details

  1. Lukas Ded

    Reproductive Biology, IBT CAS and BIOCEV centre, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Jae Yeon Hwang

    Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kiyoshi Miki

    Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Huanan F Shi

    Department of Physiology and Biophysics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3710-5917
  5. Jean-Ju Chung

    Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
    For correspondence
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8018-1355


National Institutes of Health (R01HD096745)

  • Jean-Ju Chung

Yale School of Medicine (Start-up funds)

  • Jean-Ju Chung

Yale University (a Yale Goodman-Gilman ScholarAward-2015)

  • Jean-Ju Chung

Male Contraceptive Initiative (Postdoctoral fellowship)

  • Jae Yeon Hwang

Czech Science Foundation (GJ20-17403Y)

  • Lukas Ded

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.


Animal experimentation: Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All the mice were treated in accordance with guidelines approved by Yale (20079) Animal Care and Use Committees (IACUC).

Reviewing Editor

  1. Merritt Maduke, Stanford University School of Medicine, United States

Publication history

  1. Received: August 12, 2020
  2. Accepted: October 19, 2020
  3. Accepted Manuscript published: October 20, 2020 (version 1)
  4. Accepted Manuscript updated: October 22, 2020 (version 2)
  5. Version of Record published: December 1, 2020 (version 3)


© 2020, Ded et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.


  • 3,109
    Page views
  • 403
  • 9

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Cell Biology
    2. Developmental Biology
    Karl F Lechtreck et al.
    Research Article Updated

    Intraflagellar transport (IFT) carries proteins into flagella but how IFT trains interact with the large number of diverse proteins required to assemble flagella remains largely unknown. Here, we show that IFT of radial spokes in Chlamydomonas requires ARMC2/PF27, a conserved armadillo repeat protein associated with male infertility and reduced lung function. Chlamydomonas ARMC2 was highly enriched in growing flagella and tagged ARMC2 and the spoke protein RSP3 co-migrated on anterograde trains. In contrast, a cargo and an adapter of inner and outer dynein arms moved independently of ARMC2, indicating that unrelated cargoes distribute stochastically onto the IFT trains. After concomitant unloading at the flagellar tip, RSP3 attached to the axoneme whereas ARMC2 diffused back to the cell body. In armc2/pf27 mutants, IFT of radial spokes was abolished and the presence of radial spokes was limited to the proximal region of flagella. We conclude that ARMC2 is a cargo adapter required for IFT of radial spokes to ensure their assembly along flagella. ARMC2 belongs to a growing class of cargo-specific adapters that enable flagellar transport of preassembled axonemal substructures by IFT.

    1. Cell Biology
    2. Neuroscience
    Lisa AE Catsburg et al.
    Research Article

    At postsynaptic sites of neurons, a prominent clathrin-coated structure, the endocytic zone (EZ), controls the trafficking of glutamate receptors and is essential for synaptic plasticity. Despite its importance, little is known about how this clathrin structure is organized to mediate endocytosis. We used live-cell and super-resolution microscopy to reveal the dynamic organization of this poorly understood clathrin structure in rat hippocampal neurons. We found that a subset of endocytic proteins only transiently appeared at postsynaptic sites. In contrast, other proteins were persistently enriched and partitioned at the edge of the EZ. We found that uncoupling the EZ from the synapse led to the loss of most of these components, while disrupting interactions with the actin cytoskeleton or membrane did not alter EZ positioning. Finally, we found that plasticity-inducing stimuli promoted the reorganization of the EZ. We conclude that the EZ is a stable, highly organized molecular platform where components are differentially recruited and positioned to orchestrate the endocytosis of synaptic receptors.