3D in situ imaging of female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice

  1. Lukas Ded
  2. Jae Yeon Hwang
  3. Kiyoshi Miki
  4. Huanan F Shi
  5. Jean-Ju Chung  Is a corresponding author
  1. IBT CAS and BIOCEV centre, Czech Republic
  2. Yale School of Medicine, United States
  3. Howard Hughes Medical Institute, Boston Children's Hospital, United States
  4. Baylor College of Medicine, United States

Abstract

Out of millions of ejaculated sperm, only a few reach the fertilization site in mammals. Flagellar Ca2+ signaling nanodomains, organized by multi-subunit CatSper calcium channel complexes, are pivotal for sperm migration in the female tract, implicating CatSper-dependent mechanisms in sperm selection. Here, using biochemical and pharmacological studies, we demonstrate that CatSper1 is an O-linked glycosylated protein, undergoing capacitation-induced processing dependent on Ca2+ and phosphorylation cascades. CatSper1 processing correlates with protein tyrosine phosphorylation (pY) development in sperm cells capacitated in vitro and in vivo. Using 3D in situ molecular imaging and ANN-based automatic detection of sperm distributed along the cleared female tract, we demonstrate that all spermatozoa past the UTJ possess intact CatSper1 signals. Together, we reveal that fertilizing mouse spermatozoa in situ are characterized by intact CatSper channel, lack of pY, and reacted acrosomes. These findings provide molecular insight into sperm selection for successful fertilization in the female reproductive tract.

Data availability

All data generated or analysed during this study are included in the manuscript, supplementary and source data files.

Article and author information

Author details

  1. Lukas Ded

    Reproductive Biology, IBT CAS and BIOCEV centre, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Jae Yeon Hwang

    Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kiyoshi Miki

    Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Huanan F Shi

    Department of Physiology and Biophysics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3710-5917
  5. Jean-Ju Chung

    Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
    For correspondence
    jean-ju.chung@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8018-1355

Funding

National Institutes of Health (R01HD096745)

  • Jean-Ju Chung

Yale School of Medicine (Start-up funds)

  • Jean-Ju Chung

Yale University (a Yale Goodman-Gilman ScholarAward-2015)

  • Jean-Ju Chung

Male Contraceptive Initiative (Postdoctoral fellowship)

  • Jae Yeon Hwang

Czech Science Foundation (GJ20-17403Y)

  • Lukas Ded

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All the mice were treated in accordance with guidelines approved by Yale (20079) Animal Care and Use Committees (IACUC).

Copyright

© 2020, Ded et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,789
    views
  • 597
    downloads
  • 36
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lukas Ded
  2. Jae Yeon Hwang
  3. Kiyoshi Miki
  4. Huanan F Shi
  5. Jean-Ju Chung
(2020)
3D in situ imaging of female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice
eLife 9:e62043.
https://doi.org/10.7554/eLife.62043

Share this article

https://doi.org/10.7554/eLife.62043

Further reading

    1. Cell Biology
    Yan Song, Linda J Fothergill ... Gene W Yeo
    Research Article

    Dynamic interactions between gut mucosal cells and the external environment are essential to maintain gut homeostasis. Enterochromaffin (EC) cells transduce both chemical and mechanical signals and produce 5-hydroxytryptamine to mediate disparate physiological responses. However, the molecular and cellular basis for functional diversity of ECs remains to be adequately defined. Here, we integrated single-cell transcriptomics with spatial image analysis to identify 14 EC clusters that are topographically organized along the gut. Subtypes predicted to be sensitive to the chemical environment and mechanical forces were identified that express distinct transcription factors and hormones. A Piezo2+ population in the distal colon was endowed with a distinctive neuronal signature. Using a combination of genetic, chemogenetic, and pharmacological approaches, we demonstrated Piezo2+ ECs are required for normal colon motility. Our study constructs a molecular map for ECs and offers a framework for deconvoluting EC cells with pleiotropic functions.

    1. Cell Biology
    Kaili Du, Hongyu Chen ... Dan Li
    Research Article

    Niemann–Pick disease type C (NPC) is a devastating lysosomal storage disease characterized by abnormal cholesterol accumulation in lysosomes. Currently, there is no treatment for NPC. Transcription factor EB (TFEB), a member of the microphthalmia transcription factors (MiTF), has emerged as a master regulator of lysosomal function and promoted the clearance of substrates stored in cells. However, it is not known whether TFEB plays a role in cholesterol clearance in NPC disease. Here, we show that transgenic overexpression of TFEB, but not TFE3 (another member of MiTF family) facilitates cholesterol clearance in various NPC1 cell models. Pharmacological activation of TFEB by sulforaphane (SFN), a previously identified natural small-molecule TFEB agonist by us, can dramatically ameliorate cholesterol accumulation in human and mouse NPC1 cell models. In NPC1 cells, SFN induces TFEB nuclear translocation via a ROS-Ca2+-calcineurin-dependent but MTOR-independent pathway and upregulates the expression of TFEB-downstream genes, promoting lysosomal exocytosis and biogenesis. While genetic inhibition of TFEB abolishes the cholesterol clearance and exocytosis effect by SFN. In the NPC1 mouse model, SFN dephosphorylates/activates TFEB in the brain and exhibits potent efficacy of rescuing the loss of Purkinje cells and body weight. Hence, pharmacological upregulating lysosome machinery via targeting TFEB represents a promising approach to treat NPC and related lysosomal storage diseases, and provides the possibility of TFEB agonists, that is, SFN as potential NPC therapeutic candidates.