3D in situ imaging of female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice

  1. Lukas Ded
  2. Jae Yeon Hwang
  3. Kiyoshi Miki
  4. Huanan F Shi
  5. Jean-Ju Chung  Is a corresponding author
  1. IBT CAS and BIOCEV centre, Czech Republic
  2. Yale School of Medicine, United States
  3. Howard Hughes Medical Institute, Boston Children's Hospital, United States
  4. Baylor College of Medicine, United States

Abstract

Out of millions of ejaculated sperm, only a few reach the fertilization site in mammals. Flagellar Ca2+ signaling nanodomains, organized by multi-subunit CatSper calcium channel complexes, are pivotal for sperm migration in the female tract, implicating CatSper-dependent mechanisms in sperm selection. Here, using biochemical and pharmacological studies, we demonstrate that CatSper1 is an O-linked glycosylated protein, undergoing capacitation-induced processing dependent on Ca2+ and phosphorylation cascades. CatSper1 processing correlates with protein tyrosine phosphorylation (pY) development in sperm cells capacitated in vitro and in vivo. Using 3D in situ molecular imaging and ANN-based automatic detection of sperm distributed along the cleared female tract, we demonstrate that all spermatozoa past the UTJ possess intact CatSper1 signals. Together, we reveal that fertilizing mouse spermatozoa in situ are characterized by intact CatSper channel, lack of pY, and reacted acrosomes. These findings provide molecular insight into sperm selection for successful fertilization in the female reproductive tract.

Data availability

All data generated or analysed during this study are included in the manuscript, supplementary and source data files.

Article and author information

Author details

  1. Lukas Ded

    Reproductive Biology, IBT CAS and BIOCEV centre, Prague, Czech Republic
    Competing interests
    The authors declare that no competing interests exist.
  2. Jae Yeon Hwang

    Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kiyoshi Miki

    Howard Hughes Medical Institute, Boston Children's Hospital, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Huanan F Shi

    Department of Physiology and Biophysics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3710-5917
  5. Jean-Ju Chung

    Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, United States
    For correspondence
    jean-ju.chung@yale.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8018-1355

Funding

National Institutes of Health (R01HD096745)

  • Jean-Ju Chung

Yale School of Medicine (Start-up funds)

  • Jean-Ju Chung

Yale University (a Yale Goodman-Gilman ScholarAward-2015)

  • Jean-Ju Chung

Male Contraceptive Initiative (Postdoctoral fellowship)

  • Jae Yeon Hwang

Czech Science Foundation (GJ20-17403Y)

  • Lukas Ded

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Merritt Maduke, Stanford University School of Medicine, United States

Ethics

Animal experimentation: Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All the mice were treated in accordance with guidelines approved by Yale (20079) Animal Care and Use Committees (IACUC).

Version history

  1. Received: August 12, 2020
  2. Accepted: October 19, 2020
  3. Accepted Manuscript published: October 20, 2020 (version 1)
  4. Accepted Manuscript updated: October 22, 2020 (version 2)
  5. Version of Record published: December 1, 2020 (version 3)

Copyright

© 2020, Ded et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,548
    views
  • 573
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lukas Ded
  2. Jae Yeon Hwang
  3. Kiyoshi Miki
  4. Huanan F Shi
  5. Jean-Ju Chung
(2020)
3D in situ imaging of female reproductive tract reveals molecular signatures of fertilizing spermatozoa in mice
eLife 9:e62043.
https://doi.org/10.7554/eLife.62043

Share this article

https://doi.org/10.7554/eLife.62043

Further reading

    1. Cell Biology
    2. Stem Cells and Regenerative Medicine
    Rajdeep Banerjee, Thomas J Meyer ... David D Roberts
    Research Article

    Extramedullary erythropoiesis is not expected in healthy adult mice, but erythropoietic gene expression was elevated in lineage-depleted spleen cells from Cd47−/− mice. Expression of several genes associated with early stages of erythropoiesis was elevated in mice lacking CD47 or its signaling ligand thrombospondin-1, consistent with previous evidence that this signaling pathway inhibits expression of multipotent stem cell transcription factors in spleen. In contrast, cells expressing markers of committed erythroid progenitors were more abundant in Cd47−/− spleens but significantly depleted in Thbs1−/− spleens. Single-cell transcriptome and flow cytometry analyses indicated that loss of CD47 is associated with accumulation and increased proliferation in spleen of Ter119CD34+ progenitors and Ter119+CD34 committed erythroid progenitors with elevated mRNA expression of Kit, Ermap, and Tfrc. Induction of committed erythroid precursors is consistent with the known function of CD47 to limit the phagocytic removal of aged erythrocytes. Conversely, loss of thrombospondin-1 delays the turnover of aged red blood cells, which may account for the suppression of committed erythroid precursors in Thbs1−/− spleens relative to basal levels in wild-type mice. In addition to defining a role for CD47 to limit extramedullary erythropoiesis, these studies reveal a thrombospondin-1-dependent basal level of extramedullary erythropoiesis in adult mouse spleen.

    1. Cell Biology
    Makiko Kashio, Sandra Derouiche ... Makoto Tominaga
    Research Article

    Reports indicate that an interaction between TRPV4 and anoctamin 1 (ANO1) could be widely involved in water efflux of exocrine glands, suggesting that the interaction could play a role in perspiration. In secretory cells of sweat glands present in mouse foot pads, TRPV4 clearly colocalized with cytokeratin 8, ANO1, and aquaporin-5 (AQP5). Mouse sweat glands showed TRPV4-dependent cytosolic Ca2+ increases that were inhibited by menthol. Acetylcholine-stimulated sweating in foot pads was temperature-dependent in wild-type, but not in TRPV4-deficient mice and was inhibited by menthol both in wild-type and TRPM8KO mice. The basal sweating without acetylcholine stimulation was inhibited by an ANO1 inhibitor. Sweating could be important for maintaining friction forces in mouse foot pads, and this possibility is supported by the finding that wild-type mice climbed up a slippery slope more easily than TRPV4-deficient mice. Furthermore, TRPV4 expression was significantly higher in controls and normohidrotic skin from patients with acquired idiopathic generalized anhidrosis (AIGA) compared to anhidrotic skin from patients with AIGA. Collectively, TRPV4 is likely involved in temperature-dependent perspiration via interactions with ANO1, and TRPV4 itself or the TRPV4/ANO 1 complex would be targeted to develop agents that regulate perspiration.