Asynchrony between virus diversity and antibody selection limits influenza virus evolution

  1. Dylan H Morris  Is a corresponding author
  2. Velislava N Petrova
  3. Fernando W Rossine
  4. Edyth Parker
  5. Bryan T Grenfell
  6. Richard A Neher
  7. Simon A Levin
  8. Colin A Russell  Is a corresponding author
  1. Princeton University, United States
  2. Wellcome Sanger Institute, United Kingdom
  3. Academic Medical Center, University of Amsterdam, Netherlands
  4. University of Basel, Switzerland

Abstract

Seasonal influenza viruses create a persistent global disease burden by evolving to escape immunity induced by prior infections and vaccinations. New antigenic variants have a substantial selective advantage at the population level, but these variants are rarely selected within-host, even in previously immune individuals. Using a mathematical model, we show that the temporal asynchrony between within-host virus exponential growth and antibody-mediated selection could limit within-host antigenic evolution. If selection for new antigenic variants acts principally at the point of initial virus inoculation, where small virus populations encounter well-matched mucosal antibodies in previously infected individuals, there can exist protection against reinfection that does not regularly produce observable new antigenic variants within individual infected hosts. Our results provide a theoretical explanation for how virus antigenic evolution can be highly selective at the global level but nearly neutral within host. They also suggest new avenues for improving influenza control.

Data availability

All data used in this study are specifically listed in the appendix. No new primary data was generated in this study.

Article and author information

Author details

  1. Dylan H Morris

    Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    For correspondence
    dhmorris@princeton.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3655-406X
  2. Velislava N Petrova

    Human Genetics, Wellcome Sanger Institute, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Fernando W Rossine

    Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  4. Edyth Parker

    Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  5. Bryan T Grenfell

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3227-5909
  6. Richard A Neher

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    Richard A Neher, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2525-1407
  7. Simon A Levin

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  8. Colin A Russell

    Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    c.a.russell@amc.uva.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2113-162X

Funding

H2020 European Research Council (Naviflu:818353)

  • Colin A Russell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Morris et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,312
    views
  • 448
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dylan H Morris
  2. Velislava N Petrova
  3. Fernando W Rossine
  4. Edyth Parker
  5. Bryan T Grenfell
  6. Richard A Neher
  7. Simon A Levin
  8. Colin A Russell
(2020)
Asynchrony between virus diversity and antibody selection limits influenza virus evolution
eLife 9:e62105.
https://doi.org/10.7554/eLife.62105

Share this article

https://doi.org/10.7554/eLife.62105

Further reading

    1. Evolutionary Biology
    Asher D Cutter
    Review Article

    Haldane’s rule occupies a special place in biology as one of the few ‘rules’ of speciation, with empirical support from hundreds of species. And yet, its classic purview is restricted taxonomically to the subset of organisms with heteromorphic sex chromosomes. I propose explicit acknowledgement of generalized hypotheses about Haldane’s rule that frame sex bias in hybrid dysfunction broadly and irrespective of the sexual system. The consensus view of classic Haldane’s rule holds that sex-biased hybrid dysfunction across taxa is a composite phenomenon that requires explanations from multiple causes. Testing of the multiple alternative hypotheses for Haldane’s rule is, in many cases, applicable to taxa with homomorphic sex chromosomes, environmental sex determination, haplodiploidy, and hermaphroditism. Integration of a variety of biological phenomena about hybrids across diverse sexual systems, beyond classic Haldane’s rule, will help to derive a more general understanding of the contributing forces and mechanisms that lead to predictable sex biases in evolutionary divergence and speciation.

    1. Evolutionary Biology
    Zofia Dubicka, Jarosław Tyszka ... Ulf Bickmeyer
    Research Article

    Living organisms control the formation of mineral skeletons and other structures through biomineralization. Major phylogenetic groups usually consistently follow a single biomineralization pathway. Foraminifera, which are very efficient marine calcifiers, making a substantial contribution to global carbonate production and global carbon sequestration, are regarded as an exception. This phylum has been commonly thought to follow two contrasting models of either in situ ‘mineralization of extracellular matrix’ attributed to hyaline rotaliid shells, or ‘mineralization within intracellular vesicles’ attributed to porcelaneous miliolid shells. Our previous results on rotaliids along with those on miliolids in this paper question such a wide divergence of biomineralization pathways within the same phylum of Foraminifera. We have found under a high-resolution scanning electron microscopy (SEM) that precipitation of high-Mg calcitic mesocrystals in porcelaneous shells takes place in situ and form a dense, chaotic meshwork of needle-like crystallites. We have not observed calcified needles that already precipitated in the transported vesicles, what challenges the previous model of miliolid mineralization. Hence, Foraminifera probably utilize less divergent calcification pathways, following the recently discovered biomineralization principles. Mesocrystalline chamber walls in both models are therefore most likely created by intravesicular accumulation of pre-formed liquid amorphous mineral phase deposited and crystallized within the extracellular organic matrix enclosed in a biologically controlled privileged space by active pseudopodial structures. Both calcification pathways evolved independently in the Paleozoic and are well conserved in two clades that represent different chamber formation modes.