Asynchrony between virus diversity and antibody selection limits influenza virus evolution

  1. Dylan H Morris  Is a corresponding author
  2. Velislava N Petrova
  3. Fernando W Rossine
  4. Edyth Parker
  5. Bryan T Grenfell
  6. Richard A Neher
  7. Simon A Levin
  8. Colin A Russell  Is a corresponding author
  1. Princeton University, United States
  2. Wellcome Sanger Institute, United Kingdom
  3. Academic Medical Center, University of Amsterdam, Netherlands
  4. University of Basel, Switzerland

Abstract

Seasonal influenza viruses create a persistent global disease burden by evolving to escape immunity induced by prior infections and vaccinations. New antigenic variants have a substantial selective advantage at the population level, but these variants are rarely selected within-host, even in previously immune individuals. Using a mathematical model, we show that the temporal asynchrony between within-host virus exponential growth and antibody-mediated selection could limit within-host antigenic evolution. If selection for new antigenic variants acts principally at the point of initial virus inoculation, where small virus populations encounter well-matched mucosal antibodies in previously infected individuals, there can exist protection against reinfection that does not regularly produce observable new antigenic variants within individual infected hosts. Our results provide a theoretical explanation for how virus antigenic evolution can be highly selective at the global level but nearly neutral within host. They also suggest new avenues for improving influenza control.

Data availability

All data used in this study are specifically listed in the appendix. No new primary data was generated in this study.

Article and author information

Author details

  1. Dylan H Morris

    Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    For correspondence
    dhmorris@princeton.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3655-406X
  2. Velislava N Petrova

    Human Genetics, Wellcome Sanger Institute, Cambridge, United Kingdom
    Competing interests
    No competing interests declared.
  3. Fernando W Rossine

    Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  4. Edyth Parker

    Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    No competing interests declared.
  5. Bryan T Grenfell

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3227-5909
  6. Richard A Neher

    Biozentrum, University of Basel, Basel, Switzerland
    Competing interests
    Richard A Neher, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2525-1407
  7. Simon A Levin

    Department of Ecology and Evolutionary Biology, Princeton University, Princeton, United States
    Competing interests
    No competing interests declared.
  8. Colin A Russell

    Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
    For correspondence
    c.a.russell@amc.uva.nl
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2113-162X

Funding

H2020 European Research Council (Naviflu:818353)

  • Colin A Russell

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Morris et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,467
    views
  • 475
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Dylan H Morris
  2. Velislava N Petrova
  3. Fernando W Rossine
  4. Edyth Parker
  5. Bryan T Grenfell
  6. Richard A Neher
  7. Simon A Levin
  8. Colin A Russell
(2020)
Asynchrony between virus diversity and antibody selection limits influenza virus evolution
eLife 9:e62105.
https://doi.org/10.7554/eLife.62105

Share this article

https://doi.org/10.7554/eLife.62105

Further reading

    1. Evolutionary Biology
    Ljiljana Mihajlovic, Bharat Ravi Iyengar ... Yolanda Schaerli
    Research Article

    Gene duplication drives evolution by providing raw material for proteins with novel functions. An influential hypothesis by Ohno (1970) posits that gene duplication helps genes tolerate new mutations and thus facilitates the evolution of new phenotypes. Competing hypotheses argue that deleterious mutations will usually inactivate gene duplicates too rapidly for Ohno’s hypothesis to work. We experimentally tested Ohno’s hypothesis by evolving one or exactly two copies of a gene encoding a fluorescent protein in Escherichia coli through several rounds of mutation and selection. We analyzed the genotypic and phenotypic evolutionary dynamics of the evolving populations through high-throughput DNA sequencing, biochemical assays, and engineering of selected variants. In support of Ohno’s hypothesis, populations carrying two gene copies displayed higher mutational robustness than those carrying a single gene copy. Consequently, the double-copy populations experienced relaxed purifying selection, evolved higher phenotypic and genetic diversity, carried more mutations and accumulated combinations of key beneficial mutations earlier. However, their phenotypic evolution was not accelerated, possibly because one gene copy rapidly became inactivated by deleterious mutations. Our work provides an experimental platform to test models of evolution by gene duplication, and it supports alternatives to Ohno’s hypothesis that point to the importance of gene dosage.

    1. Cell Biology
    2. Evolutionary Biology
    Paul Richard J Yulo, Nicolas Desprat ... Heather L Hendrickson
    Research Article

    Maintenance of rod-shape in bacterial cells depends on the actin-like protein MreB. Deletion of mreB from Pseudomonas fluorescens SBW25 results in viable spherical cells of variable volume and reduced fitness. Using a combination of time-resolved microscopy and biochemical assay of peptidoglycan synthesis, we show that reduced fitness is a consequence of perturbed cell size homeostasis that arises primarily from differential growth of daughter cells. A 1000-generation selection experiment resulted in rapid restoration of fitness with derived cells retaining spherical shape. Mutations in the peptidoglycan synthesis protein Pbp1A were identified as the main route for evolutionary rescue with genetic reconstructions demonstrating causality. Compensatory pbp1A mutations that targeted transpeptidase activity enhanced homogeneity of cell wall synthesis on lateral surfaces and restored cell size homeostasis. Mechanistic explanations require enhanced understanding of why deletion of mreB causes heterogeneity in cell wall synthesis. We conclude by presenting two testable hypotheses, one of which posits that heterogeneity stems from non-functional cell wall synthesis machinery, while the second posits that the machinery is functional, albeit stalled. Overall, our data provide support for the second hypothesis and draw attention to the importance of balance between transpeptidase and glycosyltransferase functions of peptidoglycan building enzymes for cell shape determination.