Multi-Level Selection: The perils of cheating

Experiments on mitochondrial DNA in worms highlight that cheating does not always pay off.
  1. M Florencia Camus  Is a corresponding author
  1. Department of Genetics, Evolution and Environment, University College London, United Kingdom

Competition for resources, especially for nutrients, is pervasive in nature and can lead to both cooperation and conflict. This competition can take place at all levels of organisation – from organelles, cells and tissues to whole organisms and populations. Cheating is surprisingly common, with cheaters selfishly using common resources at the expense of others (Maynard Smith and Szathmary, 1997).

Changes in the nutritional environment often lead to competition for resources that can have a dramatic impact on the behaviour and dynamics of different groups (Pereda et al., 2017; Requejo and Camacho, 2011). This raises an important question: how are cooperation and cheating influenced by nutrition? Now, in eLife, Bryan Gitschlag, Ann Tate and Maulik Patel of Vanderbilt University report the results of experiments on the mitochondrial DNA of the nematode Caenorhabditis elegans that shed light on this question (Gitschlag et al., 2020).

Mitochondria are organelles that have their own DNA (because, it is thought, they were originally prokaryotic cells that became part of eukaryotic cells as a result of symbiosis). Indeed, mitochondria co-operate with their host cell by providing energy in exchange for a supply of molecular building blocks that are necessary to maintain and replicate mitochondrial DNA. However, a cell can contain different variants of mitochondrial DNA (mtDNA), which creates an environment where distinct mtDNA genomes have to compete to replicate first. Indeed, previous work has shown that cells can contain ‘cheater mitochondria’ that promote their own replication, even if this comes at the expense of the overall fitness of the organism (Klucnika and Ma, 2019).

Gitschlag et al. used genetically modified worms that harboured both wildtype and cheater mtDNA to confirm that the latter is able to replicate more successfully than wildtype mtDNA. Consequently, the offspring contained a higher proportion of cheater mtDNA than their parents (Figure 1). However, cheater mitochondria are not necessarily as efficient as wildtype mitochondria, and Gitschlag et al. found that worms with high levels of cheater mtDNA had decreased levels of mitochondrial function and fertility. So, while cheater DNA is better at invading the next generation, it does so at the expense of the whole organism, and across many generations, cheater mtDNA loses out to wildtype mtDNA at the population level (Figure 1).

Multilevel selection of cheater mitochondria.

Cheater mitochondrial DNA (mtDNA) have a selective advantage that allows it to replicate faster than wildtype mtDNA in individual worms (top left), but this reduces fitness at the population level in successive generations, so the frequency of cheaters decreases with time (bottom left). A lack of nutrients reduces the selective advantage of cheater mtDNA within individual worms (top right), but this has little impact at the population level (bottom right; red and orange lines). However, knocking out a gene called daf-16/foxo leads to a greater reduction in the frequency of cheaters over time (bottom left; blue line) under conditions of nutrient stress.

To better understand how nutrition – and more specifically nutrient signalling – affected the worms, Gitschlag et al. applied two different strategies: restricting the supply of food to the worms and using genetic techniques to knock out a key nutrient-sensing gene (daf-16/foxo) in some worms. First, the researchers kept one group of worms on a nutrient-poor diet and a control group on a nutrient-rich diet. They found that worms raised on a restricted diet harboured less cheater mtDNA than those raised on a nutrient-rich diet. Second, without daf-16/foxo, the selective advantage of cheater mitochondria was also eliminated, and the worms had less cheater mtDNA. This suggests that cheater mtDNA depends on nutrient-sensing genes to proliferate.

Nutrient signalling also affected DNA dynamics at the population level. To study the impact of nutrient deprivation on cheater mtDNA over generations, wildtype and genetically modified worms were kept together in either nutrient-rich or nutrient-poor environments. In the nutrient-poor environments, the proportion of worms carrying cheater mtDNA decreased over generations, albeit at the same rate as in the control group, when daf-16/foxo was present. On the other hand, worms without daf-16/foxo suffered greatly when raised in nutrient-deprived environments, confirming the importance of this gene to cheater mitochondria.

Taken together, these results show that the ability to survive in stressful environments can foster tolerance to cheating, inadvertently prolonging the persistence of cheater genotypes. This suggests that across populations, the genetic response to lack of food can be exploited to partially shield cheater mitochondria from natural selection at the organismal level, which may be useful for understanding diseases associated with mitochondrial dysfunction.


  1. Book
    1. Maynard Smith J
    2. Szathmary E
    The Major Transitions in Evolution
    Oxford University Press.

Article and author information

Author details

  1. M Florencia Camus

    M Florencia Camus is in the Department of Genetics, Evolution and Environment, University College London, London, United Kingdom

    For correspondence
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0626-6865

Publication history

  1. Version of Record published: September 22, 2020 (version 1)


© 2020, Camus

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.


  • 1,260
    Page views
  • 83
  • 1

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. M Florencia Camus
Multi-Level Selection: The perils of cheating
eLife 9:e62222.

Further reading

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Olaya Rendueles, Jorge AM Moura de Sousa, Eduardo PC Rocha
    Research Article

    Many bacterial genomes carry prophages whose induction can eliminate competitors. In response, bacteria may become resistant by modifying surface receptors, by lysogenization, or by other poorly known processes. All these mechanisms affect bacterial fitness and population dynamics. To understand the evolution of phage resistance, we co-cultivated a phage-sensitive strain (BJ1) and a poly-lysogenic Klebsiella pneumoniae strain (ST14) under different phage pressures. The population yield remained stable after 30 days. Surprisingly, the initially sensitive strain remained in all populations and its frequency was highest when phage pressure was strongest. Resistance to phages in these populations emerged initially through mutations preventing capsule biosynthesis. Protection through lysogeny was rarely observed because the lysogens have increased death rates due to prophage induction. Unexpectedly, the adaptation process changed at longer time scales the frequency of capsulated cells in BJ1 populations increased again, because the production of capsule was fine-tuned, reducing the ability of phage to absorb. Contrary to the lysogens, these capsulated resistant clones are pan-resistant to a large panel of phages. Intriguingly, some clones exhibited transient non-genetic resistance to phages, suggesting an important role of phenotypic resistance in coevolving populations. Our results show that interactions between lysogens and sensitive strains are shaped by antagonistic co-evolution between phages and bacteria. These processes may involve key physiological traits, such as the capsule, and depend on the time frame of the evolutionary process. At short time scales, simple and costly inactivating mutations are adaptive, but in the long-term, changes drawing more favorable trade-offs between resistance to phages and cell fitness become prevalent.

    1. Evolutionary Biology
    Noah H Rose, Athanase Badolo ... Carolyn S McBride
    Research Article Updated

    The globally invasive mosquito subspecies Aedes aegypti aegypti is an effective vector of human arboviruses, in part because it specializes in biting humans and breeding in human habitats. Recent work suggests that specialization first arose as an adaptation to long, hot dry seasons in the West African Sahel, where Ae. aegypti relies on human-stored water for breeding. Here, we use whole-genome cross-coalescent analysis to date the emergence of human-specialist populationsand thus further probe the climate hypothesis. Importantly, we take advantage of the known migration of specialists out of Africa during the Atlantic Slave Trade to calibrate the coalescent clock and thus obtain a more precise estimate of the older evolutionary event than would otherwise be possible. We find that human-specialist mosquitoes diverged rapidly from ecological generalists approximately 5000 years ago, at the end of the African Humid Period—a time when the Sahara dried and water stored by humans became a uniquely stable, aquatic niche in the Sahel. We also use population genomic analyses to date a previously observed influx of human-specialist alleles into major West African cities. The characteristic length of tracts of human-specialist ancestry present on a generalist genetic background in Kumasi and Ouagadougou suggests the change in behavior occurred during rapid urbanization over the last 20–40 years. Taken together, we show that the timing and ecological context of two previously observed shifts towards human biting in Ae. aegypti differ; climate was likely the original driver, but urbanization has become increasingly important in recent decades.