A putative origin of the insect chemosensory receptor superfamily in the last common eukaryotic ancestor

  1. Richard Benton  Is a corresponding author
  2. Christophe Dessimoz
  3. David Moi
  1. University of Lausanne, Switzerland

Abstract

The insect chemosensory repertoires of Odorant Receptors (ORs) and Gustatory Receptors (GRs) together represent one of the largest families of ligand-gated ion channels. Previous analyses have identified homologous 'Gustatory Receptor-Like (GRL)' proteins across Animalia, but the evolutionary origin of this novel class of ion channels is unknown. We describe a survey of unicellular eukaryotic genomes for GRLs, identifying several candidates in fungi, protists and algae that contain many structural features characteristic of animal GRLs. The existence of these proteins in unicellular eukaryotes, together with ab initio protein structure predictions, provide evidence for homology between GRLs and a family of uncharacterized plant proteins containing the DUF3537 domain. Together, our analyses suggest an origin of this protein superfamily in the last common eukaryotic ancestor.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Richard Benton

    Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
    For correspondence
    Richard.Benton@unil.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4305-8301
  2. Christophe Dessimoz

    Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2170-853X
  3. David Moi

    Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.

Funding

H2020 European Research Council (833548)

  • Richard Benton

FP7 Ideas: European Research Council (615094)

  • Richard Benton

Novartis Stiftung für Medizinisch-Biologische Forschung (N/A)

  • Richard Benton

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (31003A_166646)

  • Richard Benton

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (183723)

  • Christophe Dessimoz
  • David Moi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Claude Desplan, New York University, United States

Publication history

  1. Received: August 26, 2020
  2. Accepted: December 3, 2020
  3. Accepted Manuscript published: December 4, 2020 (version 1)
  4. Version of Record published: December 17, 2020 (version 2)

Copyright

© 2020, Benton et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,898
    Page views
  • 314
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Richard Benton
  2. Christophe Dessimoz
  3. David Moi
(2020)
A putative origin of the insect chemosensory receptor superfamily in the last common eukaryotic ancestor
eLife 9:e62507.
https://doi.org/10.7554/eLife.62507

Further reading

    1. Developmental Biology
    2. Evolutionary Biology
    Sophie Pantalacci
    Insight

    The tooth shape of sharks and mice are regulated by a similar signaling center despite their teeth having very different geometries.

    1. Evolutionary Biology
    2. Neuroscience
    Elias T Lunsford et al.
    Research Article Updated

    Animals can evolve dramatic sensory functions in response to environmental constraints, but little is known about the neural mechanisms underlying these changes. The Mexican tetra, Astyanax mexicanus, is a leading model to study genetic, behavioral, and physiological evolution by comparing eyed surface populations and blind cave populations. We compared neurophysiological responses of posterior lateral line afferent neurons and motor neurons across A. mexicanus populations to reveal how shifts in sensory function may shape behavioral diversity. These studies indicate differences in intrinsic afferent signaling and gain control across populations. Elevated endogenous afferent activity identified a lower response threshold in the lateral line of blind cavefish relative to surface fish leading to increased evoked potentials during hair cell deflection in cavefish. We next measured the effect of inhibitory corollary discharges from hindbrain efferent neurons onto afferents during locomotion. We discovered that three independently derived cavefish populations have evolved persistent afferent activity during locomotion, suggesting for the first time that partial loss of function in the efferent system can be an evolutionary mechanism for neural adaptation of a vertebrate sensory system.