Single cell multiomic profiling of human lung reveals cell type-specific and age-dynamic control of SARS-CoV2 host genes
Abstract
Respiratory failure associated with COVID-19 has placed focus on the lung. Here, we present single-nucleus accessible chromatin profiles of 90,980 nuclei and matched single-nucleus transcriptomes of 46,500 nuclei in non-diseased lung from donors of ~30 weeks gestation, ~3 years and ~30 years. We mapped candidate cis-regulatory elements (cCREs) and linked them to putative target genes. We identified distal cCREs with age-increased activity linked to SARS-CoV-2 host entry gene TMPRSS2 in alveolar type 2 cells which had immune regulatory signatures and harbored variants associated with respiratory traits. At the 3p21.31 COVID-19 risk locus, a candidate variant overlapped a distal cCRE linked to SLC6A20, a gene expressed in alveolar cells and with known functional association with the SARS-CoV-2 receptor ACE2. Our findings provide insight into regulatory logic underlying genes implicated in COVID-19 in individual lung cell types across age. More broadly, these datasets will facilitate interpretation of risk loci for lung diseases.
Data availability
Processed data including the full list of peaks are available for download and can be explored using the web portal www.lungepigenome.org. Raw sequencing files has been submitted to LungMap Data Collecting Core and will be submitted to dbGAP.Source data for Figure 1 - figure supplement 1 is available as Supplementary Table 2; Source data for Figure 3B and Figure 3 - figure supplement 1A is available as Supplementary Table 3. Source data for Figure 3E is available as Supplementary Table 4. Source data for Figure 3F is available as Supplementary Table 5. Source data for Figure 3G is available as Supplementary Table 6.Source data for Figure 4A is available as Supplementary Table 7.
Article and author information
Author details
Funding
National Heart, Lung, and Blood Institute (1U01HL148867)
- Allen Wang
- Jamie M Verheyden
- Sebastian Preissl
- Xin Sun
National Heart, Lung, and Blood Institute (U01HL122700)
- Gloria Pryhuber
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Edward E Morrisey, University of Pennsylvania, United States
Version history
- Received: August 27, 2020
- Accepted: November 8, 2020
- Accepted Manuscript published: November 9, 2020 (version 1)
- Version of Record published: November 25, 2020 (version 2)
Copyright
© 2020, Wang et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 10,148
- Page views
-
- 1,023
- Downloads
-
- 90
- Citations
Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Developmental Biology
- Evolutionary Biology
The study of color patterns in the animal integument is a fundamental question in biology, with many lepidopteran species being exemplary models in this endeavor due to their relative simplicity and elegance. While significant advances have been made in unraveling the cellular and molecular basis of lepidopteran pigmentary coloration, the morphogenesis of wing scale nanostructures involved in structural color production is not well understood. Contemporary research on this topic largely focuses on a few nymphalid model taxa (e.g., Bicyclus, Heliconius), despite an overwhelming diversity in the hierarchical nanostructural organization of lepidopteran wing scales. Here, we present a time-resolved, comparative developmental study of hierarchical scale nanostructures in Parides eurimedes and five other papilionid species. Our results uphold the putative conserved role of F-actin bundles in acting as spacers between developing ridges, as previously documented in several nymphalid species. Interestingly, while ridges are developing in P. eurimedes, plasma membrane manifests irregular mesh-like crossribs characteristic of Papilionidae, which delineate the accretion of cuticle into rows of planar disks in between ridges. Once the ridges have grown, disintegrating F-actin bundles appear to reorganize into a network that supports the invagination of plasma membrane underlying the disks, subsequently forming an extruded honeycomb lattice. Our results uncover a previously undocumented role for F-actin in the morphogenesis of complex wing scale nanostructures, likely specific to Papilionidae.
-
- Developmental Biology
- Neuroscience
The hippocampus executes crucial functions from declarative memory to adaptive behaviors associated with cognition and emotion. However, the mechanisms of how morphogenesis and functions along the hippocampal dorsoventral axis are differentiated and integrated are still largely unclear. Here, we show that Nr2f1 and Nr2f2 genes are distinctively expressed in the dorsal and ventral hippocampus, respectively. The loss of Nr2f2 results in ectopic CA1/CA3 domains in the ventral hippocampus. The deficiency of Nr2f1 leads to the failed specification of dorsal CA1, among which there are place cells. The deletion of both Nr2f genes causes almost agenesis of the hippocampus with abnormalities of trisynaptic circuit and adult neurogenesis. Moreover, Nr2f1/2 may cooperate to guarantee appropriate morphogenesis and function of the hippocampus by regulating the Lhx5-Lhx2 axis. Our findings revealed a novel mechanism that Nr2f1 and Nr2f2 converge to govern the differentiation and integration of distinct characteristics of the hippocampus in mice.