Selective activation of FZD7 promotes mesendodermal differentiation of human pluripotent stem cells

  1. Diana Gumber
  2. Myan Do
  3. Neya Suresh Kumar
  4. Pooja R Sonavane
  5. Christina C N Wu
  6. Luisjesus S Cruz
  7. Stephanie Grainger
  8. Dennis Carson
  9. Terry Gaasterland
  10. Karl Willert  Is a corresponding author
  1. University of California, San Diego, United States
  2. San Diego State University, United States

Abstract

WNT proteins are secreted symmetry breaking signals that interact with cell surface receptors of the FZD family to regulate a multitude of developmental processes. Studying selectivity between WNTs and FZDs has been hampered by the paucity of purified WNT proteins and by their apparent non-selective interactions with the FZD receptors. Here we describe an engineered protein, called F7L6, comprised of antibody-derived single chain variable fragments, that selectively binds to human FZD7 and the co-receptor LRP6. F7L6 potently activates WNT/b-catenin signaling in a manner similar to Wnt3a. In contrast to Wnt3a, F7L6 engages only FZD7 and none of the other FZD proteins. Treatment of human pluripotent stem (hPS) cells with F7L6 initiates transcriptional programs similar to those observed during primitive streak formation and subsequent gastrulation in the mammalian embryo. This demonstrates that selective engagement and activation of FZD7 signaling is sufficient to promote mesendodermal differentiation of hPS cells.

Data availability

The RNA-seq and ChIP-seq data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE158121.

The following data sets were generated

Article and author information

Author details

  1. Diana Gumber

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0913-8001
  2. Myan Do

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5892-6859
  3. Neya Suresh Kumar

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pooja R Sonavane

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christina C N Wu

    Department of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Luisjesus S Cruz

    Department of Biology, San Diego State University, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephanie Grainger

    Department of Biology, San Diego State University, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dennis Carson

    Department of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Terry Gaasterland

    Scripps Institution of Oceanography, Scripps Genome Center, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Karl Willert

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    For correspondence
    kwillert@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8020-6804

Funding

National Institutes of Health (R35GM134961)

  • Karl Willert

National Institutes of Health (S10OD026929)

  • Karl Willert

National Cancer Institute (T32 CA067754,graduate student fellowship to Myan Do)

  • Myan Do

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Gumber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,841
    views
  • 252
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Diana Gumber
  2. Myan Do
  3. Neya Suresh Kumar
  4. Pooja R Sonavane
  5. Christina C N Wu
  6. Luisjesus S Cruz
  7. Stephanie Grainger
  8. Dennis Carson
  9. Terry Gaasterland
  10. Karl Willert
(2020)
Selective activation of FZD7 promotes mesendodermal differentiation of human pluripotent stem cells
eLife 9:e63060.
https://doi.org/10.7554/eLife.63060

Share this article

https://doi.org/10.7554/eLife.63060

Further reading

    1. Developmental Biology
    2. Neuroscience
    Jialin Li, Feihong Yang ... Zhuangzhi Zhang
    Short Report

    The emergence of myelinating oligodendrocytes represents a pivotal developmental milestone in vertebrates, given their capacity to ensheath axons and facilitate the swift conduction of action potentials. It is widely accepted that cortical oligodendrocyte progenitor cells (OPCs) arise from medial ganglionic eminence (MGE), lateral/caudal ganglionic eminence (LGE/CGE), and cortical radial glial cells (RGCs). Here, we used two different fate mapping strategies to challenge the established notion that the LGE generates cortical OPCs. Furthermore, we used a Cre/loxP-dependent exclusion strategy to reveal that the LGE/CGE does not give rise to cortical OPCs. Additionally, we showed that specifically eliminating MGE-derived OPCs leads to a significant reduction of cortical OPCs. Together, our findings indicate that the LGE does not generate cortical OPCs, contrary to previous beliefs. These findings provide a new view of the developmental origins of cortical OPCs and a valuable foundation for future research on both normal development and oligodendrocyte-related disease.

    1. Developmental Biology
    Rula Sha, Ruochen Guo ... Ying Feng
    Research Article

    SRSF2 plays a dual role, functioning both as a transcriptional regulator and a key player in alternative splicing. The absence of Srsf2 in MyoD + progenitors resulted in perinatal mortality in mice, accompanied by severe skeletal muscle defects. SRSF2 deficiency disrupts the directional migration of MyoD progenitors, causing them to disperse into both muscle and non-muscle regions. Single-cell RNA-sequencing analysis revealed significant alterations in Srsf2-deficient myoblasts, including a reduction in extracellular matrix components, diminished expression of genes involved in ameboid-type cell migration and cytoskeleton organization, mitosis irregularities, and premature differentiation. Notably, one of the targets regulated by Srsf2 is the serine/threonine kinase Aurka. Knockdown of Aurka led to reduced cell proliferation, disrupted cytoskeleton, and impaired differentiation, reflecting the effects seen with Srsf2 knockdown. Crucially, the introduction of exogenous Aurka in Srsf2-knockdown cells markedly alleviated the differentiation defects caused by Srsf2 knockdown. Furthermore, our research unveiled the role of Srsf2 in controlling alternative splicing within genes associated with human skeletal muscle diseases, such as BIN1, DMPK, FHL1, and LDB3. Specifically, the precise knockdown of the Bin1 exon17-containing variant, which is excluded following Srsf2 depletion, profoundly disrupted C2C12 cell differentiation. In summary, our study offers valuable insights into the role of SRSF2 in governing MyoD progenitors to specific muscle regions, thereby controlling their differentiation through the regulation of targeted genes and alternative splicing during skeletal muscle development.