Selective activation of FZD7 promotes mesendodermal differentiation of human pluripotent stem cells

  1. Diana Gumber
  2. Myan Do
  3. Neya Suresh Kumar
  4. Pooja R Sonavane
  5. Christina C N Wu
  6. Luisjesus S Cruz
  7. Stephanie Grainger
  8. Dennis Carson
  9. Terry Gaasterland
  10. Karl Willert  Is a corresponding author
  1. University of California, San Diego, United States
  2. San Diego State University, United States

Abstract

WNT proteins are secreted symmetry breaking signals that interact with cell surface receptors of the FZD family to regulate a multitude of developmental processes. Studying selectivity between WNTs and FZDs has been hampered by the paucity of purified WNT proteins and by their apparent non-selective interactions with the FZD receptors. Here we describe an engineered protein, called F7L6, comprised of antibody-derived single chain variable fragments, that selectively binds to human FZD7 and the co-receptor LRP6. F7L6 potently activates WNT/b-catenin signaling in a manner similar to Wnt3a. In contrast to Wnt3a, F7L6 engages only FZD7 and none of the other FZD proteins. Treatment of human pluripotent stem (hPS) cells with F7L6 initiates transcriptional programs similar to those observed during primitive streak formation and subsequent gastrulation in the mammalian embryo. This demonstrates that selective engagement and activation of FZD7 signaling is sufficient to promote mesendodermal differentiation of hPS cells.

Data availability

The RNA-seq and ChIP-seq data discussed in this publication have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO Series accession number GSE158121.

The following data sets were generated

Article and author information

Author details

  1. Diana Gumber

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0913-8001
  2. Myan Do

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5892-6859
  3. Neya Suresh Kumar

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pooja R Sonavane

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Christina C N Wu

    Department of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Luisjesus S Cruz

    Department of Biology, San Diego State University, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Stephanie Grainger

    Department of Biology, San Diego State University, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Dennis Carson

    Department of Medicine, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Terry Gaasterland

    Scripps Institution of Oceanography, Scripps Genome Center, University of California, San Diego, San Diego, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Karl Willert

    Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, United States
    For correspondence
    kwillert@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8020-6804

Funding

National Institutes of Health (R35GM134961)

  • Karl Willert

National Institutes of Health (S10OD026929)

  • Karl Willert

National Cancer Institute (T32 CA067754,graduate student fellowship to Myan Do)

  • Myan Do

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2020, Gumber et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,934
    views
  • 257
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Diana Gumber
  2. Myan Do
  3. Neya Suresh Kumar
  4. Pooja R Sonavane
  5. Christina C N Wu
  6. Luisjesus S Cruz
  7. Stephanie Grainger
  8. Dennis Carson
  9. Terry Gaasterland
  10. Karl Willert
(2020)
Selective activation of FZD7 promotes mesendodermal differentiation of human pluripotent stem cells
eLife 9:e63060.
https://doi.org/10.7554/eLife.63060

Share this article

https://doi.org/10.7554/eLife.63060

Further reading

    1. Developmental Biology
    Anastasiia Lozovska, Ana Casaca ... Moises Mallo
    Research Article

    During the trunk to tail transition the mammalian embryo builds the outlets for the intestinal and urogenital tracts, lays down the primordia for the hindlimb and external genitalia, and switches from the epiblast/primitive streak (PS) to the tail bud as the driver of axial extension. Genetic and molecular data indicate that Tgfbr1 is a key regulator of the trunk to tail transition. Tgfbr1 has been shown to control the switch of the neuromesodermal competent cells from the epiblast to the chordoneural hinge to generate the tail bud. We now show that in mouse embryos Tgfbr1 signaling also controls the remodeling of the lateral plate mesoderm (LPM) and of the embryonic endoderm associated with the trunk to tail transition. In the absence of Tgfbr1, the two LPM layers do not converge at the end of the trunk, extending instead as separate layers until the caudal embryonic extremity, and failing to activate markers of primordia for the hindlimb and external genitalia. The vascular remodeling involving the dorsal aorta and the umbilical artery leading to the connection between embryonic and extraembryonic circulation was also affected in the Tgfbr1 mutant embryos. Similar alterations in the LPM and vascular system were also observed in Isl1 null mutants, indicating that this factor acts in the regulatory cascade downstream of Tgfbr1 in LPM-derived tissues. In addition, in the absence of Tgfbr1 the embryonic endoderm fails to expand to form the endodermal cloaca and to extend posteriorly to generate the tail gut. We present evidence suggesting that the remodeling activity of Tgfbr1 in the LPM and endoderm results from the control of the posterior PS fate after its regression during the trunk to tail transition. Our data, together with previously reported observations, place Tgfbr1 at the top of the regulatory processes controlling the trunk to tail transition.

    1. Developmental Biology
    2. Neuroscience
    Odessa R Yabut, Jessica Arela ... Samuel J Pleasure
    Research Article

    Mutations in Sonic Hedgehog (SHH) signaling pathway genes, for example, Suppressor of Fused (SUFU), drive granule neuron precursors (GNP) to form medulloblastomas (MBSHH). However, how different molecular lesions in the Shh pathway drive transformation is frequently unclear, and SUFU mutations in the cerebellum seem distinct. In this study, we show that fibroblast growth factor 5 (FGF5) signaling is integral for many infantile MBSHH cases and that FGF5 expression is uniquely upregulated in infantile MBSHH tumors. Similarly, mice lacking SUFU (Sufu-cKO) ectopically express Fgf5 specifically along the secondary fissure where GNPs harbor preneoplastic lesions and show that FGFR signaling is also ectopically activated in this region. Treatment with an FGFR antagonist rescues the severe GNP hyperplasia and restores cerebellar architecture. Thus, direct inhibition of FGF signaling may be a promising and novel therapeutic candidate for infantile MBSHH.