1. Neuroscience
Download icon

Dendritic osmosensors modulate activity-induced calcium influx in oxytocinergic magnocellular neurons of the mouse PVN

  1. Wanhui Sheng  Is a corresponding author
  2. Scott W Harden  Is a corresponding author
  3. Yalun Tan  Is a corresponding author
  4. Eric G Krause  Is a corresponding author
  5. Charles J Frazier  Is a corresponding author
  1. University of Florida, United States
Research Article
  • Cited 0
  • Views 257
  • Annotations
Cite this article as: eLife 2021;10:e63486 doi: 10.7554/eLife.63486

Abstract

Hypothalamic oxytocinergic magnocellular neurons have a fascinating ability to release peptide from both their axon terminals and from their dendrites. Existing data indicates that the relationship between somatic activity and dendritic release is not constant, but the mechanisms through which this relationship can be modulated are not completely understood. Here we use a combination of electrical and optical recording techniques to quantify activity-induced calcium influx in proximal vs. distal dendrites of oxytocinergic magnocellular neurons located in the paraventricular nucleus of the hypothalamus (OT-MCNs). Results reveal that the dendrites of OT-MCNs are weak conductors of somatic voltage changes, however activity-induced dendritic calcium influx can be robustly regulated by both osmosensitive and non-osmosensitive ion channels located along the dendritic membrane. Overall, this study reveals that dendritic conductivity is a dynamic and endogenously regulated feature of OT-MCNs that is likely to have substantial functional impact on central oxytocin release.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all figures.

Article and author information

Author details

  1. Wanhui Sheng

    Department of Pharmacodynamics, University of Florida, Gainesville, United States
    For correspondence
    shengwanhui@ufl.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Scott W Harden

    Department of Pharmacodynamics, University of Florida, Gainesville, United States
    For correspondence
    swharden@ufl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0757-1979
  3. Yalun Tan

    Department of Pharmacodynamics, University of Florida, Gainesville, United States
    For correspondence
    yaluntan@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
  4. Eric G Krause

    Department of Pharmacodynamics, University of Florida, Gainesville, United States
    For correspondence
    EKrause@cop.ufl.edu
    Competing interests
    The authors declare that no competing interests exist.
  5. Charles J Frazier

    Department of Pharmacodynamics, University of Florida, Gainesville, United States
    For correspondence
    cjfraz@ufl.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3550-4789

Funding

National Institute of Mental Health (R01MH104641)

  • Charles J Frazier

National Heart, Lung, and Blood Institute (R01HL122494)

  • Eric G Krause

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All animal procedures were reviewed and approved by the Institutional Animal Care and Use Committee (IACUC) at the University of Florida (under protocol # 201701866).

Reviewing Editor

  1. Ryohei Yasuda, Max Planck Florida Institute for Neuroscience, United States

Publication history

  1. Received: September 25, 2020
  2. Accepted: July 11, 2021
  3. Accepted Manuscript published: July 12, 2021 (version 1)

Copyright

© 2021, Sheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 257
    Page views
  • 52
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Genetics and Genomics
    2. Neuroscience
    Li Hou et al.
    Research Article Updated

    Long-term flight depends heavily on intensive energy metabolism in animals; however, the neuroendocrine mechanisms underlying efficient substrate utilization remain elusive. Here, we report that the adipokinetic hormone/corazonin-related peptide (ACP) can facilitate muscle lipid utilization in a famous long-term migratory flighting species, Locusta migratoria. By peptidomic analysis and RNAi screening, we identified brain-derived ACP as a key flight-related neuropeptide. ACP gene expression increased notably upon sustained flight. CRISPR/Cas9-mediated knockout of ACP gene and ACP receptor gene (ACPR) significantly abated prolonged flight of locusts. Transcriptomic and metabolomic analyses further revealed that genes and metabolites involved in fatty acid transport and oxidation were notably downregulated in the flight muscle of ACP mutants. Finally, we demonstrated that a fatty-acid-binding protein (FABP) mediated the effects of ACP in regulating muscle lipid metabolism during long-term flight in locusts. Our results elucidated a previously undescribed neuroendocrine mechanism underlying efficient energy utilization associated with long-term flight.

    1. Neuroscience
    Krishna N Badhiwala et al.
    Research Article

    Hydra vulgaris is an emerging model organism for neuroscience due to its small size, transparency, genetic tractability, and regenerative nervous system; however, fundamental properties of its sensorimotor behaviors remain unknown. Here, we use microfluidic devices combined with fluorescent calcium imaging and surgical resectioning to study how the diffuse nervous system coordinates Hydra's mechanosensory response. Mechanical stimuli cause animals to contract, and we find this response relies on at least two distinct networks of neurons in the oral and aboral regions of the animal. Different activity patterns arise in these networks depending on whether the animal is contracting spontaneously or contracting in response to mechanical stimulation. Together, these findings improve our understanding of how Hydra’s diffuse nervous system coordinates sensorimotor behaviors. These insights help reveal how sensory information is processed in an animal with a diffuse, radially symmetric neural architecture unlike the dense, bilaterally symmetric nervous systems found in most model organisms.