Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after mild COVID-19 infection

  1. Anastasia A Minervina
  2. Ekaterina A Komech
  3. Aleksei Titov
  4. Meriem Bensouda Koraichi
  5. Elisa Rosati
  6. Ilgar Z Mamedov
  7. Andre Franke
  8. Grigory A Efimov
  9. Dmitriy M Chudakov
  10. Thierry Mora
  11. Aleksandra M Walczak
  12. Yuri B Lebedev
  13. Mikhail V Pogorelyy  Is a corresponding author
  1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Federation
  2. National Research Center for Hematology, Russian Federation
  3. École Normale Supérieure, France
  4. Kiel University, Germany
  5. Ecole Normale Supérieure de Paris, France

Abstract

COVID-19 is a global pandemic caused by the SARS-CoV-2 coronavirus. T cells play a key role in the adaptive antiviral immune response by killing infected cells and facilitating the selection of virus-specific antibodies. However neither the dynamics and cross-reactivity of the SARS-CoV-2-specific T cell response nor the diversity of resulting immune memory are well understood. In this study we use longitudinal high-throughput T cell receptor (TCR) sequencing to track changes in the T cell repertoire following two mild cases of COVID-19. In both donors we identified CD4+ and CD8+ T cell clones with transient clonal expansion after infection. The antigen specificity of CD8+ TCR sequences to SARS-CoV-2 epitopes was confirmed by both MHC tetramer binding and presence in large database of SARS-CoV-2 epitope-specific TCRs. We describe characteristic motifs in TCR sequences of COVID-19-reactive clones and show preferential occurence of these motifs in publicly available large dataset of repertoires from COVID-19 patients. We show that in both donors the majority of infection-reactive clonotypes acquire memory phenotypes. Certain T cell clones were detected in the memory fraction at the pre-infection timepoint, suggesting participation of pre-existing cross-reactive memory T cells in the immune response to SARS-CoV-2.

Data availability

Raw sequencing data are deposited to the Short Read Archive (SRA) accession: PRJNA633317. Resulting repertoires of SARS-CoV-2-reactive clones can be found in SI Tables 3-6 and also accessed from: https://github.com/pogorely/Minervina_COVID Processed TCRalpha and TCRbeta repertoire datasets are available at : https://zenodo.org/record/3835955

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Anastasia A Minervina

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9884-6351
  2. Ekaterina A Komech

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  3. Aleksei Titov

    Laboratory for Transplantation Immunology, National Research Center for Hematology, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  4. Meriem Bensouda Koraichi

    Laboratoire de Physique Theorique, École Normale Supérieure, Paris, France
    Competing interests
    No competing interests declared.
  5. Elisa Rosati

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2635-6422
  6. Ilgar Z Mamedov

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  7. Andre Franke

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Competing interests
    No competing interests declared.
  8. Grigory A Efimov

    Laboratory for Transplantation Immunology, National Research Center for Hematology, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  9. Dmitriy M Chudakov

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0430-790X
  10. Thierry Mora

    Laboratoire de physique, Ecole Normale Supérieure de Paris, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361
  11. Aleksandra M Walczak

    Laboratoire de Physique Theorique, École Normale Supérieure, Paris, France
    Competing interests
    Aleksandra M Walczak, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702
  12. Yuri B Lebedev

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4554-4733
  13. Mikhail V Pogorelyy

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    For correspondence
    m.pogorely@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0773-1204

Funding

Russian Science Foundation (RSF 20-15-00351)

  • Yuri B Lebedev

Deutsche Forschungsgemeinschaft (Exc2167)

  • Andre Franke

Deutsche Forschungsgemeinschaft (4096610003)

  • Andre Franke

H2020 European Research Council (COG 724208)

  • Aleksandra M Walczak

Russian Foundation for Basic Research (19-54-12-011)

  • Ilgar Z Mamedov

Russian Foundation for Basic Research (18-19-09132)

  • Ilgar Z Mamedov

Ministry of Science and Higher Education of the Russian Federation (075-15-2019-1789)

  • Dmitriy M Chudakov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All subjects gave written informed consent in accordance with the Declaration of Helsinki. The study protocol was approved by the Pirogov Russian National Research Medical University local ethics committee (#194 granted on March 16, 2020)

Copyright

© 2021, Minervina et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 8,160
    views
  • 1,021
    downloads
  • 106
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anastasia A Minervina
  2. Ekaterina A Komech
  3. Aleksei Titov
  4. Meriem Bensouda Koraichi
  5. Elisa Rosati
  6. Ilgar Z Mamedov
  7. Andre Franke
  8. Grigory A Efimov
  9. Dmitriy M Chudakov
  10. Thierry Mora
  11. Aleksandra M Walczak
  12. Yuri B Lebedev
  13. Mikhail V Pogorelyy
(2021)
Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after mild COVID-19 infection
eLife 10:e63502.
https://doi.org/10.7554/eLife.63502

Share this article

https://doi.org/10.7554/eLife.63502

Further reading

    1. Computational and Systems Biology
    Masaaki Uematsu, Jeremy M Baskin
    Tools and Resources

    Plasmid construction is central to life science research, and sequence verification is arguably its costliest step. Long-read sequencing has emerged as a competitor to Sanger sequencing, with the principal benefit that whole plasmids can be sequenced in a single run. Nevertheless, the current cost of nanopore sequencing is still prohibitive for routine sequencing during plasmid construction. We develop a computational approach termed Simple Algorithm for Very Efficient Multiplexing of Oxford Nanopore Experiments for You (SAVEMONEY) that guides researchers to mix multiple plasmids and subsequently computationally de-mixes the resultant sequences. SAVEMONEY defines optimal mixtures in a pre-survey step, and following sequencing, executes a post-analysis workflow involving sequence classification, alignment, and consensus determination. By using Bayesian analysis with prior probability of expected plasmid construction error rate, high-confidence sequences can be obtained for each plasmid in the mixture. Plasmids differing by as little as two bases can be mixed as a single sample for nanopore sequencing, and routine multiplexing of even six plasmids per 180 reads can still maintain high accuracy of consensus sequencing. SAVEMONEY should further democratize whole-plasmid sequencing by nanopore and related technologies, driving down the effective cost of whole-plasmid sequencing to lower than that of a single Sanger sequencing run.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.