Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after mild COVID-19 infection

  1. Anastasia A Minervina
  2. Ekaterina A Komech
  3. Aleksei Titov
  4. Meriem Bensouda Koraichi
  5. Elisa Rosati
  6. Ilgar Z Mamedov
  7. Andre Franke
  8. Grigory A Efimov
  9. Dmitriy M Chudakov
  10. Thierry Mora
  11. Aleksandra M Walczak
  12. Yuri B Lebedev
  13. Mikhail V Pogorelyy  Is a corresponding author
  1. Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Federation
  2. National Research Center for Hematology, Russian Federation
  3. École Normale Supérieure, France
  4. Kiel University, Germany
  5. Ecole Normale Supérieure de Paris, France

Abstract

COVID-19 is a global pandemic caused by the SARS-CoV-2 coronavirus. T cells play a key role in the adaptive antiviral immune response by killing infected cells and facilitating the selection of virus-specific antibodies. However neither the dynamics and cross-reactivity of the SARS-CoV-2-specific T cell response nor the diversity of resulting immune memory are well understood. In this study we use longitudinal high-throughput T cell receptor (TCR) sequencing to track changes in the T cell repertoire following two mild cases of COVID-19. In both donors we identified CD4+ and CD8+ T cell clones with transient clonal expansion after infection. The antigen specificity of CD8+ TCR sequences to SARS-CoV-2 epitopes was confirmed by both MHC tetramer binding and presence in large database of SARS-CoV-2 epitope-specific TCRs. We describe characteristic motifs in TCR sequences of COVID-19-reactive clones and show preferential occurence of these motifs in publicly available large dataset of repertoires from COVID-19 patients. We show that in both donors the majority of infection-reactive clonotypes acquire memory phenotypes. Certain T cell clones were detected in the memory fraction at the pre-infection timepoint, suggesting participation of pre-existing cross-reactive memory T cells in the immune response to SARS-CoV-2.

Data availability

Raw sequencing data are deposited to the Short Read Archive (SRA) accession: PRJNA633317. Resulting repertoires of SARS-CoV-2-reactive clones can be found in SI Tables 3-6 and also accessed from: https://github.com/pogorely/Minervina_COVID Processed TCRalpha and TCRbeta repertoire datasets are available at : https://zenodo.org/record/3835955

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Anastasia A Minervina

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9884-6351
  2. Ekaterina A Komech

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  3. Aleksei Titov

    Laboratory for Transplantation Immunology, National Research Center for Hematology, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  4. Meriem Bensouda Koraichi

    Laboratoire de Physique Theorique, École Normale Supérieure, Paris, France
    Competing interests
    No competing interests declared.
  5. Elisa Rosati

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2635-6422
  6. Ilgar Z Mamedov

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  7. Andre Franke

    Institute of Clinical Molecular Biology, Kiel University, Kiel, Germany
    Competing interests
    No competing interests declared.
  8. Grigory A Efimov

    Laboratory for Transplantation Immunology, National Research Center for Hematology, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
  9. Dmitriy M Chudakov

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0430-790X
  10. Thierry Mora

    Laboratoire de physique, Ecole Normale Supérieure de Paris, Paris, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5456-9361
  11. Aleksandra M Walczak

    Laboratoire de Physique Theorique, École Normale Supérieure, Paris, France
    Competing interests
    Aleksandra M Walczak, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2686-5702
  12. Yuri B Lebedev

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4554-4733
  13. Mikhail V Pogorelyy

    Department of Genomics of Adaptive Immunity, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
    For correspondence
    m.pogorely@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0773-1204

Funding

Russian Science Foundation (RSF 20-15-00351)

  • Yuri B Lebedev

Deutsche Forschungsgemeinschaft (Exc2167)

  • Andre Franke

Deutsche Forschungsgemeinschaft (4096610003)

  • Andre Franke

H2020 European Research Council (COG 724208)

  • Aleksandra M Walczak

Russian Foundation for Basic Research (19-54-12-011)

  • Ilgar Z Mamedov

Russian Foundation for Basic Research (18-19-09132)

  • Ilgar Z Mamedov

Ministry of Science and Higher Education of the Russian Federation (075-15-2019-1789)

  • Dmitriy M Chudakov

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All subjects gave written informed consent in accordance with the Declaration of Helsinki. The study protocol was approved by the Pirogov Russian National Research Medical University local ethics committee (#194 granted on March 16, 2020)

Copyright

© 2021, Minervina et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,986
    views
  • 1,004
    downloads
  • 102
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Anastasia A Minervina
  2. Ekaterina A Komech
  3. Aleksei Titov
  4. Meriem Bensouda Koraichi
  5. Elisa Rosati
  6. Ilgar Z Mamedov
  7. Andre Franke
  8. Grigory A Efimov
  9. Dmitriy M Chudakov
  10. Thierry Mora
  11. Aleksandra M Walczak
  12. Yuri B Lebedev
  13. Mikhail V Pogorelyy
(2021)
Longitudinal high-throughput TCR repertoire profiling reveals the dynamics of T cell memory formation after mild COVID-19 infection
eLife 10:e63502.
https://doi.org/10.7554/eLife.63502

Share this article

https://doi.org/10.7554/eLife.63502

Further reading

    1. Computational and Systems Biology
    2. Genetics and Genomics
    Daniel Hui, Scott Dudek ... Marylyn D Ritchie
    Research Article

    Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed the effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N = 491,111) and African (N = 21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best- and worst-performing quintiles for certain covariates. Twenty-eight covariates had significant PGSBMI–covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects – across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account nonlinear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge genome-wide association studies effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.

    1. Computational and Systems Biology
    2. Neuroscience
    Cesare V Parise, Marc O Ernst
    Research Article

    Audiovisual information reaches the brain via both sustained and transient input channels, representing signals’ intensity over time or changes thereof, respectively. To date, it is unclear to what extent transient and sustained input channels contribute to the combined percept obtained through multisensory integration. Based on the results of two novel psychophysical experiments, here we demonstrate the importance of the transient (instead of the sustained) channel for the integration of audiovisual signals. To account for the present results, we developed a biologically inspired, general-purpose model for multisensory integration, the multisensory correlation detectors, which combines correlated input from unimodal transient channels. Besides accounting for the results of our psychophysical experiments, this model could quantitatively replicate several recent findings in multisensory research, as tested against a large collection of published datasets. In particular, the model could simultaneously account for the perceived timing of audiovisual events, multisensory facilitation in detection tasks, causality judgments, and optimal integration. This study demonstrates that several phenomena in multisensory research that were previously considered unrelated, all stem from the integration of correlated input from unimodal transient channels.