Protein-based condensation mechanisms drive the assembly of RNA-rich P granules

  1. Helen Schmidt
  2. Andrea Putnam
  3. Dominique Rasoloson
  4. Geraldine Seydoux  Is a corresponding author
  1. Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, United States
  2. Johns Hopkins University School of Medicine, United States

Abstract

Germ granules are protein-RNA condensates that segregate with the embryonic germline. In C. elegans embryos, germ (P) granule assembly requires MEG-3, an intrinsically-disordered protein that forms RNA-rich condensates on the surface of PGL condensates at the core of P granules. MEG-3 is related to the GCNA family and contains an N-terminal disordered region (IDR) and a predicted ordered C-terminus featuring an HMG-like motif (HMGL). We find that MEG-3 is modular protein that uses its IDR to bind RNA and its C-terminus to drive condensation. The HMGL motif mediates binding to PGL-3 and is required for co-assembly of MEG-3 and PGL-3 condensates in vivo. Mutations in HMGL cause MEG-3 and PGL-3 to form separate condensates that no longer co-segregate to the germline or recruit RNA. Our findings highlight the importance of protein-based condensation mechanisms and condensate-condensate interactions in the assembly of RNA-rich germ granules.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 2-5.

Article and author information

Author details

  1. Helen Schmidt

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3449-2790
  2. Andrea Putnam

    Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7985-142X
  3. Dominique Rasoloson

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2210-1569
  4. Geraldine Seydoux

    Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, United States
    For correspondence
    gseydoux@jhmi.edu
    Competing interests
    Geraldine Seydoux, serves on the Scientific Advisory Board of Dewpoint Therapeutics, Inc..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8257-0493

Funding

National Institutes of Health (5R37HD037047)

  • Helen Schmidt
  • Andrea Putnam
  • Dominique Rasoloson
  • Geraldine Seydoux

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Robert H Singer, Albert Einstein College of Medicine, United States

Version history

  1. Received: October 2, 2020
  2. Accepted: June 8, 2021
  3. Accepted Manuscript published: June 9, 2021 (version 1)
  4. Accepted Manuscript updated: June 14, 2021 (version 2)
  5. Version of Record published: June 28, 2021 (version 3)

Copyright

© 2021, Schmidt et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,884
    Page views
  • 388
    Downloads
  • 13
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helen Schmidt
  2. Andrea Putnam
  3. Dominique Rasoloson
  4. Geraldine Seydoux
(2021)
Protein-based condensation mechanisms drive the assembly of RNA-rich P granules
eLife 10:e63698.
https://doi.org/10.7554/eLife.63698

Share this article

https://doi.org/10.7554/eLife.63698

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.