1. Cancer Biology
Download icon

Single-cell chromatin accessibility profiling of glioblastoma identifies an Invasive cancer stem cell population associated with lower survival

Research Article
  • Cited 0
  • Views 743
  • Annotations
Cite this article as: eLife 2021;10:e64090 doi: 10.7554/eLife.64090

Abstract

Chromatin accessibility discriminates stem from mature cell populations, enabling the identification of primitive stem-like cells in primary tumors, such as Glioblastoma (GBM) where self-renewing cells driving cancer progression and recurrence are prime targets for therapeutic intervention. We show, using single-cell chromatin accessibility, that primary human GBMs harbor a heterogeneous self-renewing population whose diversity is captured in patient-derived glioblastoma stem cells (GSCs). In depth characterization of chromatin accessibility in GSCs identifies three GSC states: Reactive, Constructive, and Invasive, each governed by uniquely essential transcription factors and present within GBMs in varying proportions. Orthotopic xenografts reveal that GSC states associate with survival, and identify an invasive GSC signature predictive of low patient survival, in line with the higher invasive properties of Invasive state GSCs compared to Reactive and Constructive GSCs as shown by in vitro and in vivo assays. Our chromatin-driven characterization of GSC states improves prognostic precision and identifies dependencies to guide combination therapies.

Article and author information

Author details

  1. Paul Guilhamon

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8276-5987
  2. Charles Chesnelong

    Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Michelle M Kushida

    Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Ana Nikolic

    Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Divya Singhal

    Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  6. Graham MacLeod

    Leslie Dan Faculty of Pharmacy, Pharmaceutical Sciences, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6401-9307
  7. Seyed Ali Madani Tonekaboni

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  8. Florence MG Cavalli

    Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  9. Christopher Arlidge

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  10. Nishani Rajakulendran

    Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  11. Naghmeh Rastegar

    Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  12. Xiaoguang Hao

    Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2695-0111
  13. Rozina Hassam

    Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. Laura J Smith

    Medical Biophysics, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  15. Heather Whetstone

    Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  16. Fiona J Coutinho

    Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  17. Bettina Nadorp

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  18. Katrina I Ellestad

    Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  19. Artee H Luchman

    Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  20. Jennifer Ai-wen Chan

    Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  21. Molly S Shoichet

    Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1830-3475
  22. Michael D Taylor

    Developmental and Stem Cell Biology Program, Hospital for Sick Children, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  23. Benjamin Haibe-Kains

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
  24. Sam Weiss

    Pathology and Laboratory Medicine, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  25. Stephane Angers

    Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7241-9044
  26. Marco Gallo

    Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Canada
    Competing interests
    The authors declare that no competing interests exist.
  27. Peter B Dirks

    Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Canada
    For correspondence
    peter.dirks@sickkids.ca
    Competing interests
    The authors declare that no competing interests exist.
  28. Mathieu Lupien

    Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
    For correspondence
    mlupien@uhnres.utoronto.ca
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0929-9478

Funding

CIHR (TGH-158221)

  • Stephane Angers
  • Peter B Dirks
  • Mathieu Lupien

SU2C canada (SU2C-AACR-DT-19-15)

  • Michael D Taylor
  • Sam Weiss
  • Peter B Dirks
  • Mathieu Lupien

CIHR (MFE 338954)

  • Paul Guilhamon

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal procedures were performed according to and approved by the Animal Care Committee of the Hospital for Sick Children or the University of Calgary. All attempts are made to minimize the handling time during surgery and treatment so as not to unduly stress the animals. Animals are observed daily after surgery to ensure there are no unexpected complications

Human subjects: All tissue samples were obtained following informed consent from patients, and all experimental procedures were performed in accordance with the Research Ethics Board at The Hospital for Sick Children (Toronto, Canada), the University of Calgary Ethics Review Board, and the Health Research Ethics Board of Alberta - Cancer Committee (HREBA). Approval to pathological data was obtained from the respective institutional review boards.

Reviewing Editor

  1. Lynne-Marie Postovit, University of Alberta, Canada

Publication history

  1. Received: October 17, 2020
  2. Accepted: January 8, 2021
  3. Accepted Manuscript published: January 11, 2021 (version 1)

Copyright

© 2021, Guilhamon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 743
    Page views
  • 120
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    Takahisa Maruno et al.
    Research Article Updated

    Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. Although rigorous efforts identified the presence of ‘cancer stem cells (CSCs)’ in PDAC and molecular markers for them, stem cell dynamics in vivo have not been clearly demonstrated. Here we focused on Doublecortin-like kinase 1 (Dclk1), known as a CSC marker of PDAC. Using genetic lineage tracing with a dual-recombinase system and live imaging, we showed that Dclk1+ tumor cells continuously provided progeny cells within pancreatic intraepithelial neoplasia, primary and metastatic PDAC, and PDAC-derived spheroids in vivo and in vitro. Furthermore, genes associated with CSC and epithelial mesenchymal transition were enriched in mouse Dclk1+ and human DCLK1-high PDAC cells. Thus, we provided direct functional evidence for the stem cell activity of Dclk1+ cells in vivo, revealing the essential roles of Dclk1+ cells in expansion of pancreatic neoplasia in all progressive stages.

    1. Cancer Biology
    László Bányai et al.
    Research Article

    A major goal of cancer genomics is to identify all genes that play critical roles in carcinogenesis. Most approaches focused on genes positively selected for mutations that drive carcinogenesis and neglected the role of negative selection. Some studies have actually concluded that negative selection has no role in cancer evolution. We have re-examined the role of negative selection in tumor evolution through the analysis of the patterns of somatic mutations affecting the coding sequences of human genes. Our analyses have confirmed that tumor suppressor genes are positively selected for inactivating mutations, oncogenes, however, were found to display signals of both negative selection for inactivating mutations and positive selection for activating mutations. Significantly, we have identified numerous human genes that show signs of strong negative selection during tumor evolution, suggesting that their functional integrity is essential for the growth and survival of tumor cells.