Single-PanIN-seq unveils that ARID1A deficiency promotes pancreatic tumorigenesis by attenuating KRAS-induced senescence

Abstract

ARID1A is one of the most frequently mutated epigenetic regulators in a wide spectrum of cancers. Recent studies have shown that ARID1A deficiency induces global changes in the epigenetic landscape of enhancers and promoters. These broad and complex effects make it challenging to identify the driving mechanisms of ARID1A deficiency in promoting cancer progression. Here, we identified the anti-senescence effect of Arid1a deficiency in the progression of pancreatic intraepithelial neoplasia (PanIN) by profiling the transcriptome of individual PanINs in a mouse model. In a human cell line model, we found that ARID1A deficiency upregulates the expression of Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), which plays an essential role in attenuating the senescence induced by oncogenic KRAS through scavenging reactive oxygen species (ROS). As a subunit of the SWI/SNF chromatin remodeling complex, our ATAC sequencing data showed that ARID1A deficiency increases the accessibility of the enhancer region of ALDH1A1. This study provides the first evidence that ARID1A deficiency promotes pancreatic tumorigenesis by attenuating KRAS-induced senescence through the upregulation of ALDH1A1 expression.

Data availability

Sequencing data have been deposited in GEO under GSE160444

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Shou Liu

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Wenjian Cao

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yichi Niu

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4376-7792
  4. Jiayi Luo

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9873-0671
  5. Yanhua Zhao

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhiying Hu

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Chenghang Zong

    Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States
    For correspondence
    czong@bcm.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8337-8038

Funding

NIH Office of the Director (1DP2EB020399)

  • Chenghang Zong

Robert and Janice McNair Foundation (McNair Scholarship)

  • Chenghang Zong

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#AN-6434) of Baylor College Medicine. Every effort was made to minimize suffering.

Copyright

© 2021, Liu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,022
    views
  • 295
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shou Liu
  2. Wenjian Cao
  3. Yichi Niu
  4. Jiayi Luo
  5. Yanhua Zhao
  6. Zhiying Hu
  7. Chenghang Zong
(2021)
Single-PanIN-seq unveils that ARID1A deficiency promotes pancreatic tumorigenesis by attenuating KRAS-induced senescence
eLife 10:e64204.
https://doi.org/10.7554/eLife.64204

Share this article

https://doi.org/10.7554/eLife.64204

Further reading

    1. Cancer Biology
    Yumin Fu, Xinyu Guo ... Lianxin Liu
    Review Article

    Hepatocellular carcinoma (HCC), the most common type of liver tumor, is a leading cause of cancer-related deaths, and the incidence of liver cancer is still increasing worldwide. Curative hepatectomy or liver transplantation is only indicated for a small population of patients with early-stage HCC. However, most patients with HCC are not candidates for radical resection due to disease progression, leading to the choice of the conventional tyrosine kinase inhibitor drug sorafenib as first-line treatment. In the past few years, immunotherapy, mainly immune checkpoint inhibitors (ICIs), has revolutionized the clinical strategy for HCC. Combination therapy with ICIs has proven more effective than sorafenib, and clinical trials have been conducted to apply these therapies to patients. Despite significant progress in immunotherapy, the molecular mechanisms behind it remain unclear, and immune resistance is often challenging to overcome. Several studies have pointed out that the complex intercellular communication network in the immune microenvironment of HCC regulates tumor escape and drug resistance to immune response. This underscores the urgent need to analyze the immune microenvironment of HCC. This review describes the immunosuppressive cell populations in the immune microenvironment of HCC, as well as the related clinical trials, aiming to provide insights for the next generation of precision immunotherapy.

    1. Cancer Biology
    Yang Liu, Yi Jiang ... Xi Gu
    Research Article

    Distant metastasis is the major cause of death in patients with breast cancer. Epithelial–mesenchymal transition (EMT) contributes to breast cancer metastasis. Regulator of G protein-signaling (RGS) proteins modulates metastasis in various cancers. This study identified a novel role for RGS10 in EMT and metastasis in breast cancer. RGS10 protein levels were significantly lower in breast cancer tissues compared to normal breast tissues, and deficiency in RGS10 protein predicted a worse prognosis in patients with breast cancer. RGS10 protein levels were lower in the highly aggressive cell line MDA-MB-231 than in the poorly aggressive, less invasive cell lines MCF7 and SKBR3. Silencing RGS10 in SKBR3 cells enhanced EMT and caused SKBR3 cell migration and invasion. The ability of RGS10 to suppress EMT and metastasis in breast cancer was dependent on lipocalin-2 and MIR539-5p. These findings identify RGS10 as a tumor suppressor, prognostic biomarker, and potential therapeutic target for breast cancer.