Globally defining the effects of mutations in a picornavirus capsid

  1. Florian Mattenberger
  2. Victor Latorre
  3. Omer Tirosh
  4. Adi Stern
  5. Ron Geller  Is a corresponding author
  1. Universitat de Valencia, Spain
  2. Tel Aviv University, Israel

Abstract

The capsids of non-enveloped viruses are highly multimeric and multifunctional protein assemblies that play key roles in viral biology and pathogenesis. Despite their importance, a comprehensive understanding of how mutations affect viral fitness across different structural and functional attributes of the capsid is lacking. To address this limitation, we globally define the effects of mutations across the capsid of a human picornavirus. Using this resource, we identify structural and sequence determinants that accurately predict mutational fitness effects, refine evolutionary analyses, and define the sequence specificity of key capsid encoded motifs. Furthermore, capitalizing on the derived sequence requirements for capsid encoded protease cleavage sites, we implement a bioinformatic approach for identifying novel host proteins targeted by viral proteases. Our findings represent the most comprehensive investigation of mutational fitness effects in a picornavirus capsid to date and illuminate important aspects of viral biology, evolution, and host interactions.

Data availability

Sequencing data have been uploaded to SRA (Bioproject PRJNA643896, SRA SRP269871, Accession SRX8663374-SRX8663384). All data used in the paper are either included as supplemental data and/or can be found at https://github.com/RGellerLab/CVB3_Capsid_DMS.

The following data sets were generated

Article and author information

Author details

  1. Florian Mattenberger

    Institute for Integrative Systems Biology, Universitat de Valencia, Paterna, Spain
    Competing interests
    The authors declare that no competing interests exist.
  2. Victor Latorre

    Institute for Integrative Systems Biology, Universitat de Valencia, Paterna, Spain
    Competing interests
    The authors declare that no competing interests exist.
  3. Omer Tirosh

    School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel-Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Adi Stern

    School of Molecular Cell Biology and Biotechnology, Tel Aviv University, Tel-Aviv, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2919-3542
  5. Ron Geller

    Institute for Integrative Systems Biology, Universitat de Valencia, Paterna, Spain
    For correspondence
    ron.geller@uv.es
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7612-4611

Funding

Ministerio de Ciencia, Innovación y Universidades (BFU2017-86094-R)

  • Ron Geller

Ministerio de Economía, Industria y Competitividad, Gobierno de España (RYC-2015-17517)

  • Ron Geller

Ministerio de Economía, Industria y Competitividad, Gobierno de España (BES-2016-076677)

  • Florian Mattenberger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jan E Carette, Stanford University School of Medicine, United States

Version history

  1. Received: October 22, 2020
  2. Accepted: January 11, 2021
  3. Accepted Manuscript published: January 12, 2021 (version 1)
  4. Version of Record published: February 4, 2021 (version 2)

Copyright

© 2021, Mattenberger et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,829
    views
  • 233
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Florian Mattenberger
  2. Victor Latorre
  3. Omer Tirosh
  4. Adi Stern
  5. Ron Geller
(2021)
Globally defining the effects of mutations in a picornavirus capsid
eLife 10:e64256.
https://doi.org/10.7554/eLife.64256

Share this article

https://doi.org/10.7554/eLife.64256

Further reading

    1. Evolutionary Biology
    Case Vincent Miller, Jen A Bright ... Michael Pittman
    Research Article

    Enantiornithines were the dominant birds of the Mesozoic, but understanding of their diet is still tenuous. We introduce new data on the enantiornithine family Bohaiornithidae, famous for their large size and powerfully built teeth and claws. In tandem with previously published data, we comment on the breadth of enantiornithine ecology and potential patterns in which it evolved. Body mass, jaw mechanical advantage, finite element analysis of the jaw, and traditional morphometrics of the claws and skull are compared between bohaiornithids and living birds. We find bohaiornithids to be more ecologically diverse than any other enantiornithine family: Bohaiornis and Parabohaiornis are similar to living plant-eating birds; Longusunguis resembles raptorial carnivores; Zhouornis is similar to both fruit-eating birds and generalist feeders; and Shenqiornis and Sulcavis plausibly ate fish, plants, or a mix of both. We predict the ancestral enantiornithine bird to have been a generalist which ate a wide variety of foods. However, more quantitative data from across the enantiornithine tree is needed to refine this prediction. By the Early Cretaceous, enantiornithine birds had diversified into a variety of ecological niches like crown birds after the K-Pg extinction, adding to the evidence that traits unique to crown birds cannot completely explain their ecological success.

    1. Evolutionary Biology
    Mátyás Paczkó, Eörs Szathmáry, András Szilágyi
    Research Article

    The RNA world hypothesis proposes that during the early evolution of life, primordial genomes of the first self-propagating evolutionary units existed in the form of RNA-like polymers. Autonomous, non-enzymatic, and sustained replication of such information carriers presents a problem, because product formation and hybridization between template and copy strands reduces replication speed. Kinetics of growth is then parabolic with the benefit of entailing competitive coexistence, thereby maintaining diversity. Here, we test the information-maintaining ability of parabolic growth in stochastic multispecies population models under the constraints of constant total population size and chemostat conditions. We find that large population sizes and small differences in the replication rates favor the stable coexistence of the vast majority of replicator species (‘genes’), while the error threshold problem is alleviated relative to exponential amplification. In addition, sequence properties (GC content) and the strength of resource competition mediated by the rate of resource inflow determine the number of coexisting variants, suggesting that fluctuations in building block availability favored repeated cycles of exploration and exploitation. Stochastic parabolic growth could thus have played a pivotal role in preserving viable sequences generated by random abiotic synthesis and providing diverse genetic raw material to the early evolution of functional ribozymes.