1. Chromosomes and Gene Expression
  2. Computational and Systems Biology
Download icon

How subtle changes in 3D structure can create large changes in transcription

  1. Jordan Yupeng Xiao
  2. Antonina Hafner
  3. Alistair N Boettiger  Is a corresponding author
  1. Stanford University, United States
Research Article
  • Cited 0
  • Views 1,350
  • Annotations
Cite this article as: eLife 2021;10:e64320 doi: 10.7554/eLife.64320

Abstract

Animal genomes are organized into topologically associated domains (TADs). TADs are thought to contribute to gene regulation by facilitating enhancer-promoter (E-P) contacts within a TAD preventing these contacts across TAD borders. However, the absolute difference in contact frequency across TAD boundaries is usually less than two-fold, even though disruptions of TAD borders can change gene expression by ten-fold. Existing models fail to explain this hypersensitive response. Here, we propose a futile cycle model of enhancer-mediated regulation that can exhibit hypersensitivity through bistability and hysteresis. Consistent with recent experiments, this regulation does not exhibit strong correlation between enhancer-promoter contact and promoter activity, even though regulation occurs through contact. Through mathematical analysis and stochastic simulation, we show that this system can create an illusion of enhancer-promoter biochemical specificity and explain the importance of weak TAD boundaries. It also offers a mechanism to reconcile apparently contradictory results from recent global TAD disruption with local TAD boundary deletion experiments. Together, these analyses advance our understanding of cis-regulatory contacts in controlling gene expression, and suggest new experimental directions.

Data availability

This is a theoretical and computational paper using published experimental data.

The following previously published data sets were used

Article and author information

Author details

  1. Jordan Yupeng Xiao

    Program in Biophysics, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Antonina Hafner

    Department of Developmental Biology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Alistair N Boettiger

    Department of Developmental Biology, Stanford University, Stanford, United States
    For correspondence
    boettiger@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3554-5196

Funding

National Institutes of Health (U01 DK127419)

  • Alistair N Boettiger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Job Dekker, University of Massachusetts Medical School, United States

Publication history

  1. Received: October 25, 2020
  2. Accepted: June 25, 2021
  3. Accepted Manuscript published: July 9, 2021 (version 1)

Copyright

© 2021, Xiao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,350
    Page views
  • 220
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Structural Biology and Molecular Biophysics
    Inigo Urrutia-Irazabal et al.
    Research Article Updated

    The PcrA/UvrD helicase binds directly to RNA polymerase (RNAP) but the structural basis for this interaction and its functional significance have remained unclear. In this work, we used biochemical assays and hydrogen-deuterium exchange coupled to mass spectrometry to study the PcrA-RNAP complex. We find that PcrA binds tightly to a transcription elongation complex in a manner dependent on protein:protein interaction with the conserved PcrA C-terminal Tudor domain. The helicase binds predominantly to two positions on the surface of RNAP. The PcrA C-terminal domain engages a conserved region in a lineage-specific insert within the β subunit which we identify as a helicase interaction motif present in many other PcrA partner proteins, including the nucleotide excision repair factor UvrB. The catalytic core of the helicase binds near the RNA and DNA exit channels and blocking PcrA activity in vivo leads to the accumulation of R-loops. We propose a role for PcrA as an R-loop suppression factor that helps to minimize conflicts between transcription and other processes on DNA including replication.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    William F Richter et al.
    Research Article Updated

    MLL-rearranged leukemia depends on H3K79 methylation. Depletion of this transcriptionally activating mark by DOT1L deletion or high concentrations of the inhibitor pinometostat downregulates HOXA9 and MEIS1, and consequently reduces leukemia survival. Yet, some MLL-rearranged leukemias are inexplicably susceptible to low-dose pinometostat, far below concentrations that downregulate this canonical proliferation pathway. In this context, we define alternative proliferation pathways that more directly derive from H3K79me2 loss. By ICeChIP-seq, H3K79me2 is markedly depleted at pinometostat-downregulated and MLL-fusion targets, with paradoxical increases of H3K4me3 and loss of H3K27me3. Although downregulation of polycomb components accounts for some of the proliferation defect, transcriptional downregulation of FLT3 is the major pathway. Loss-of-FLT3-function recapitulates the cytotoxicity and gene expression consequences of low-dose pinometostat, whereas overexpression of constitutively active STAT5A, a target of FLT3-ITD-signaling, largely rescues these defects. This pathway also depends on MLL1, indicating combinations of DOT1L, MLL1 and FLT3 inhibitors should be explored for treating FLT3-mutant leukemia.