Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229E

  1. Kathryn E Kistler  Is a corresponding author
  2. Trevor Bedford
  1. University of Washington, United States
  2. Fred Hutchinson Cancer Research Center, United States

Abstract

Seasonal coronaviruses (OC43, 229E, NL63 and HKU1) are endemic to the human population, regularly infecting and reinfecting humans while typically causing asymptomatic to mild respiratory infections. It is not known to what extent reinfection by these viruses is due to waning immune memory or antigenic drift of the viruses. Here, we address the influence of antigenic drift on immune evasion of seasonal coronaviruses. We provide evidence that at least two of these viruses, OC43 and 229E, are undergoing adaptive evolution in regions of the viral spike protein that are exposed to human humoral immunity. This suggests that reinfection may be due, in part, to positively-selected genetic changes in these viruses that enable them to escape recognition by the immune system. It is possible that, as with seasonal influenza, these adaptive changes in antigenic regions of the virus would necessitate continual reformulation of a vaccine made against them.

Data availability

All data used in this study can be found at https://www.viprbrc.org/ or in the Github repository for this project: https://github.com/blab/seasonal-cov-adaptive-evolution.

Article and author information

Author details

  1. Kathryn E Kistler

    Molecular and Cellular Biology, University of Washington, Seattle, United States
    For correspondence
    kistlerk@uw.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3216-0020
  2. Trevor Bedford

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4039-5794

Funding

National Science Foundation (Graduation Research Fellowship Program,DGE-1762114)

  • Kathryn E Kistler

Pew Charitable Trusts (Pew Biomedical Scholar,NIH R35 GM119774-01)

  • Trevor Bedford

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Daniel B Weissman, Emory University, United States

Version history

  1. Received: October 31, 2020
  2. Accepted: December 12, 2020
  3. Accepted Manuscript published: January 19, 2021 (version 1)
  4. Version of Record published: February 4, 2021 (version 2)
  5. Version of Record updated: September 14, 2022 (version 3)

Copyright

© 2021, Kistler & Bedford

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 9,349
    views
  • 1,180
    downloads
  • 76
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kathryn E Kistler
  2. Trevor Bedford
(2021)
Evidence for adaptive evolution in the receptor-binding domain of seasonal coronaviruses OC43 and 229E
eLife 10:e64509.
https://doi.org/10.7554/eLife.64509

Share this article

https://doi.org/10.7554/eLife.64509

Further reading

    1. Computational and Systems Biology
    2. Evolutionary Biology
    Kenya Hitomi, Yoichiro Ishii, Bei-Wen Ying
    Research Article

    As the genome encodes the information crucial for cell growth, a sizeable genomic deficiency often causes a significant decrease in growth fitness. Whether and how the decreased growth fitness caused by genome reduction could be compensated by evolution was investigated here. Experimental evolution with an Escherichia coli strain carrying a reduced genome was conducted in multiple lineages for approximately 1000 generations. The growth rate, which largely declined due to genome reduction, was considerably recovered, associated with the improved carrying capacity. Genome mutations accumulated during evolution were significantly varied across the evolutionary lineages and were randomly localized on the reduced genome. Transcriptome reorganization showed a common evolutionary direction and conserved the chromosomal periodicity, regardless of highly diversified gene categories, regulons, and pathways enriched in the differentially expressed genes. Genome mutations and transcriptome reorganization caused by evolution, which were found to be dissimilar to those caused by genome reduction, must have followed divergent mechanisms in individual evolutionary lineages. Gene network reconstruction successfully identified three gene modules functionally differentiated, which were responsible for the evolutionary changes of the reduced genome in growth fitness, genome mutation, and gene expression, respectively. The diversity in evolutionary approaches improved the growth fitness associated with the homeostatic transcriptome architecture as if the evolutionary compensation for genome reduction was like all roads leading to Rome.