Defining the ultrastructure of the hematopoietic stem cell niche by correlative light and electron microscopy

  1. Sobhika Agarwala
  2. Keun-Young Kim
  3. Sebastien Phan
  4. Saeyeon Ju
  5. Ye Eun Kong
  6. Guillaume A Castillon
  7. Eric A Bushong
  8. Mark H Ellisman  Is a corresponding author
  9. Owen J Tamplin  Is a corresponding author
  1. University of Illinois at Chicago, United States
  2. University of California, San Diego, United States
  3. University of Wisconsin-Madison, United States

Abstract

The blood system is supported by hematopoietic stem and progenitor cells (HSPCs) found in a specialized microenvironment called the niche. Many different niche cell types support HSPCs, however how they interact and their ultrastructure has been difficult to define. Here we show that single endogenous HSPCs can be tracked by light microscopy, then identified by serial block-face scanning electron microscopy (SBEM) at multiscale levels. Using the zebrafish larval kidney marrow (KM) niche as a model, we followed single fluorescently-labeled HSPCs by light sheet microscopy, then confirmed their exact location in a 3D SBEM dataset. We found a variety of different configurations of HSPCs and surrounding niche cells, suggesting there could be functional heterogeneity in sites of HSPC lodgement. Our approach also allowed us to identify dopamine beta-hydroxylase (dbh) positive ganglion cells as a previously uncharacterized functional cell type in the HSPC niche. By integrating multiple imaging modalities, we could resolve the ultrastructure of single rare cells deep in live tissue and define all contacts between an HSPC and its surrounding niche cell types.

Data availability

SBEM datasets have been deposited in the National Center for Microscopy and Imaging Research (NCMIR) publicly accessible resource database Cell Image Library (CIL). There are six SBEM datasets (accession numbers: CIL:54845, CIL:54846, CIL:54847, CIL:54848, CIL:54849, CIL:54850) that are accessible as group with the following link: http://cellimagelibrary.org/groups/54850. CIL accession numbers are referenced in Table 1. Newly generated plasmids have been deposited in Addgene (#188944 and #188945).

The following data sets were generated

Article and author information

Author details

  1. Sobhika Agarwala

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  2. Keun-Young Kim

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Sebastien Phan

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Saeyeon Ju

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Ye Eun Kong

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Guillaume A Castillon

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  7. Eric A Bushong

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6195-2433
  8. Mark H Ellisman

    Department of Neurosciences, University of California, San Diego, La Jolla, United States
    For correspondence
    mellisman@ucsd.edu
    Competing interests
    No competing interests declared.
  9. Owen J Tamplin

    Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, United States
    For correspondence
    tamplin@wisc.edu
    Competing interests
    Owen J Tamplin, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9146-4860

Funding

National Heart, Lung, and Blood Institute (R01HL142998)

  • Owen J Tamplin

National Institute of Diabetes and Digestive and Kidney Diseases (K01DK103908)

  • Owen J Tamplin

American Heart Association (19POST34380221)

  • Sobhika Agarwala

National Institute of Neurological Disorders and Stroke (1U24NS120055-01)

  • Mark H Ellisman

National Institute of General Medical Sciences (R24 GM137200)

  • Mark H Ellisman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with protocols approved by the Institutional Animal Care and Use Committees at the University of Illinois at Chicago (Protocol ACC 19-051) and the University of Wisconsin-Madison (Protocol M006348).

Copyright

© 2022, Agarwala et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,832
    views
  • 749
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sobhika Agarwala
  2. Keun-Young Kim
  3. Sebastien Phan
  4. Saeyeon Ju
  5. Ye Eun Kong
  6. Guillaume A Castillon
  7. Eric A Bushong
  8. Mark H Ellisman
  9. Owen J Tamplin
(2022)
Defining the ultrastructure of the hematopoietic stem cell niche by correlative light and electron microscopy
eLife 11:e64835.
https://doi.org/10.7554/eLife.64835

Share this article

https://doi.org/10.7554/eLife.64835

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.