Defining the ultrastructure of the hematopoietic stem cell niche by correlative light and electron microscopy

  1. Sobhika Agarwala
  2. Keun-Young Kim
  3. Sebastien Phan
  4. Saeyeon Ju
  5. Ye Eun Kong
  6. Guillaume A Castillon
  7. Eric A Bushong
  8. Mark H Ellisman  Is a corresponding author
  9. Owen J Tamplin  Is a corresponding author
  1. University of Illinois at Chicago, United States
  2. University of California, San Diego, United States
  3. University of Wisconsin-Madison, United States

Abstract

The blood system is supported by hematopoietic stem and progenitor cells (HSPCs) found in a specialized microenvironment called the niche. Many different niche cell types support HSPCs, however how they interact and their ultrastructure has been difficult to define. Here we show that single endogenous HSPCs can be tracked by light microscopy, then identified by serial block-face scanning electron microscopy (SBEM) at multiscale levels. Using the zebrafish larval kidney marrow (KM) niche as a model, we followed single fluorescently-labeled HSPCs by light sheet microscopy, then confirmed their exact location in a 3D SBEM dataset. We found a variety of different configurations of HSPCs and surrounding niche cells, suggesting there could be functional heterogeneity in sites of HSPC lodgement. Our approach also allowed us to identify dopamine beta-hydroxylase (dbh) positive ganglion cells as a previously uncharacterized functional cell type in the HSPC niche. By integrating multiple imaging modalities, we could resolve the ultrastructure of single rare cells deep in live tissue and define all contacts between an HSPC and its surrounding niche cell types.

Data availability

SBEM datasets have been deposited in the National Center for Microscopy and Imaging Research (NCMIR) publicly accessible resource database Cell Image Library (CIL). There are six SBEM datasets (accession numbers: CIL:54845, CIL:54846, CIL:54847, CIL:54848, CIL:54849, CIL:54850) that are accessible as group with the following link: http://cellimagelibrary.org/groups/54850. CIL accession numbers are referenced in Table 1. Newly generated plasmids have been deposited in Addgene (#188944 and #188945).

The following data sets were generated

Article and author information

Author details

  1. Sobhika Agarwala

    Department of Pharmacology, University of Illinois at Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  2. Keun-Young Kim

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  3. Sebastien Phan

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  4. Saeyeon Ju

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  5. Ye Eun Kong

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  6. Guillaume A Castillon

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
  7. Eric A Bushong

    Center for Research in Biological Systems, University of California, San Diego, La Jolla, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6195-2433
  8. Mark H Ellisman

    Department of Neurosciences, University of California, San Diego, La Jolla, United States
    For correspondence
    mellisman@ucsd.edu
    Competing interests
    No competing interests declared.
  9. Owen J Tamplin

    Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, United States
    For correspondence
    tamplin@wisc.edu
    Competing interests
    Owen J Tamplin, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9146-4860

Funding

National Heart, Lung, and Blood Institute (R01HL142998)

  • Owen J Tamplin

National Institute of Diabetes and Digestive and Kidney Diseases (K01DK103908)

  • Owen J Tamplin

American Heart Association (19POST34380221)

  • Sobhika Agarwala

National Institute of Neurological Disorders and Stroke (1U24NS120055-01)

  • Mark H Ellisman

National Institute of General Medical Sciences (R24 GM137200)

  • Mark H Ellisman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were performed in accordance with protocols approved by the Institutional Animal Care and Use Committees at the University of Illinois at Chicago (Protocol ACC 19-051) and the University of Wisconsin-Madison (Protocol M006348).

Copyright

© 2022, Agarwala et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,724
    views
  • 738
    downloads
  • 6
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sobhika Agarwala
  2. Keun-Young Kim
  3. Sebastien Phan
  4. Saeyeon Ju
  5. Ye Eun Kong
  6. Guillaume A Castillon
  7. Eric A Bushong
  8. Mark H Ellisman
  9. Owen J Tamplin
(2022)
Defining the ultrastructure of the hematopoietic stem cell niche by correlative light and electron microscopy
eLife 11:e64835.
https://doi.org/10.7554/eLife.64835

Share this article

https://doi.org/10.7554/eLife.64835

Further reading

    1. Developmental Biology
    2. Genetics and Genomics
    Anne-Sophie Pepin, Patrycja A Jazwiec ... Sarah Kimmins
    Research Article Updated

    Paternal obesity has been implicated in adult-onset metabolic disease in offspring. However, the molecular mechanisms driving these paternal effects and the developmental processes involved remain poorly understood. One underexplored possibility is the role of paternally induced effects on placenta development and function. To address this, we investigated paternal high-fat diet-induced obesity in relation to sperm histone H3 lysine 4 tri-methylation signatures, the placenta transcriptome, and cellular composition. C57BL6/J male mice were fed either a control or high-fat diet for 10 weeks beginning at 6 weeks of age. Males were timed-mated with control-fed C57BL6/J females to generate pregnancies, followed by collection of sperm, and placentas at embryonic day (E)14.5. Chromatin immunoprecipitation targeting histone H3 lysine 4 tri-methylation (H3K4me3) followed by sequencing (ChIP-seq) was performed on sperm to define obesity-associated changes in enrichment. Paternal obesity corresponded with altered sperm H3K4me3 at promoters of genes involved in metabolism and development. Notably, altered sperm H3K4me3 was also localized at placental enhancers. Bulk RNA-sequencing on placentas revealed paternal obesity-associated sex-specific changes in expression of genes involved in hypoxic processes such as angiogenesis, nutrient transport, and imprinted genes, with a subset of de-regulated genes showing changes in H3K4me3 in sperm at corresponding promoters. Paternal obesity was also linked to impaired placenta development; specifically, a deconvolution analysis revealed altered trophoblast cell lineage specification. These findings implicate paternal obesity effects on placenta development and function as one potential developmental route to offspring metabolic disease.

    1. Developmental Biology
    Emily Delgouffe, Samuel Madureira Silva ... Ellen Goossens
    Research Article

    Although the impact of gender-affirming hormone therapy (GAHT) on spermatogenesis in trans women has already been studied, data on its precise effects on the testicular environment is poor. Therefore, this study aimed to characterize, through histological and transcriptomic analysis, the spermatogonial stem cell niche of 106 trans women who underwent standardized GAHT, comprising estrogens and cyproterone acetate. A partial dedifferentiation of Sertoli cells was observed, marked by the co-expression of androgen receptor and anti-Müllerian hormone which mirrors the situation in peripubertal boys. The Leydig cells also exhibited a distribution analogous to peripubertal tissue, accompanied by a reduced insulin-like factor 3 expression. Although most peritubular myoid cells expressed alpha-smooth muscle actin 2, the expression pattern was disturbed. Besides this, fibrosis was particularly evident in the tubular wall and the lumen was collapsing in most participants. A spermatogenic arrest was also observed in all participants. The transcriptomic profile of transgender tissue confirmed a loss of mature characteristics - a partial rejuvenation - of the spermatogonial stem cell niche and, in addition, detected inflammation processes occurring in the samples. The present study shows that GAHT changes the spermatogonial stem cell niche by partially rejuvenating the somatic cells and inducing fibrotic processes. These findings are important to further understand how estrogens and testosterone suppression affect the testis environment, and in the case of orchidectomized testes as medical waste material, their potential use in research.