A non-genetic, cell cycle dependent mechanism of platinum resistance in lung adenocarcinoma

  1. Alvaro Gonzalez Rajal  Is a corresponding author
  2. Kamila A Marzec
  3. Rachael A McCloy
  4. Max Nobis
  5. Venessa Chin
  6. Jordan F Hastings
  7. Kaitao Lai
  8. Marina Kennerson
  9. William E Hughes
  10. Vijesh Vaghjiani
  11. Paul Timpson
  12. Jason E Cain
  13. D Neil Watkins
  14. David R Croucher  Is a corresponding author
  15. Andrew Burgess  Is a corresponding author
  1. Garvan Institute of Medical Research, Australia
  2. University of Sydney, Australia
  3. Children's Medical Research Institute, Australia
  4. Hudson Institute of Medical Research, Australia
  5. Research Institute in Oncology and Hematology, Canada

Abstract

We previously used a pulse-based in vitro assay to unveil targetable signalling pathways associated with innate cisplatin resistance in lung adenocarcinoma (Hastings et al., 2020). Here we advanced this model system and identified a non-genetic mechanism of resistance that drives recovery and regrowth in a subset of cells. Using RNAseq and a suite of biosensors to track single cell fates both in vitro and in vivo, we identified that early S phase cells have a greater ability to maintain proliferative capacity, which correlated with reduced DNA damage over multiple generations. In contrast, cells in G1, late S or those treated with PARP/RAD51 inhibitors, maintained higher levels of DNA damage and underwent prolonged S/G2 phase arrest and senescence. Combined with our previous work, these data indicate that there is a non-genetic mechanism of resistance in human lung adenocarcinoma that is dependent on the cell cycle stage at the time of cisplatin exposure.

Data availability

Raw RNAseq data has been uploaded to the NCBI Gene Expression Omnibus (GEO) data repository with the accession number GSE161800.

The following data sets were generated

Article and author information

Author details

  1. Alvaro Gonzalez Rajal

    The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
    For correspondence
    a.rajal@garvan.org.au
    Competing interests
    The authors declare that no competing interests exist.
  2. Kamila A Marzec

    ANZAC Research Insitute, University of Sydney, Concord, Australia
    Competing interests
    The authors declare that no competing interests exist.
  3. Rachael A McCloy

    The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  4. Max Nobis

    Cancer Division, Garvan Institute of Medical Research, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1861-1390
  5. Venessa Chin

    The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Jordan F Hastings

    The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. Kaitao Lai

    ANZAC Research Insitute, University of Sydney, Concord, Australia
    Competing interests
    The authors declare that no competing interests exist.
  8. Marina Kennerson

    ANZAC Research Insitute, University of Sydney, Concord, Australia
    Competing interests
    The authors declare that no competing interests exist.
  9. William E Hughes

    Children's Medical Research Institute, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  10. Vijesh Vaghjiani

    Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  11. Paul Timpson

    Cancer Division, Garvan Institute of Medical Research, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  12. Jason E Cain

    Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Australia
    Competing interests
    The authors declare that no competing interests exist.
  13. D Neil Watkins

    CancerCare Manitoba, Research Institute in Oncology and Hematology, Winnipeg, Canada
    Competing interests
    The authors declare that no competing interests exist.
  14. David R Croucher

    The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Sydney, Australia
    For correspondence
    d.croucher@garvan.org.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4965-8674
  15. Andrew Burgess

    ANZAC Research Insitute, University of Sydney, Concord, Australia
    For correspondence
    andrew.burgess@sydney.edu.au
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4536-9226

Funding

National Breast Cancer Foundation (IIRS-18-103)

  • Andrew Burgess

Tour de Cure (RSP-230-2020)

  • Andrew Burgess

Cancer Institute NSW (10/FRL/3-02)

  • Andrew Burgess

Cancer Institute NSW (2013/FRL102)

  • David R Croucher

Cancer Institute NSW (15/REG/1-17)

  • David R Croucher

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments were carried out in compliance with the Australian code for the care and use of animals for scientific purposes and in compliance with Garvan Institute of Medical Research/St. Vincent's Hospital Animal Ethics Committee guidelines (ARA_18_17, ARA_16_13).

Copyright

© 2021, Gonzalez Rajal et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,465
    views
  • 313
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alvaro Gonzalez Rajal
  2. Kamila A Marzec
  3. Rachael A McCloy
  4. Max Nobis
  5. Venessa Chin
  6. Jordan F Hastings
  7. Kaitao Lai
  8. Marina Kennerson
  9. William E Hughes
  10. Vijesh Vaghjiani
  11. Paul Timpson
  12. Jason E Cain
  13. D Neil Watkins
  14. David R Croucher
  15. Andrew Burgess
(2021)
A non-genetic, cell cycle dependent mechanism of platinum resistance in lung adenocarcinoma
eLife 10:e65234.
https://doi.org/10.7554/eLife.65234

Share this article

https://doi.org/10.7554/eLife.65234

Further reading

    1. Cancer Biology
    Yiwei Huang, Gujie Wu ... Cheng Zhan
    Research Article

    Chemotherapy is widely used to treat lung adenocarcinoma (LUAD) patients comprehensively. Considering the limitations of chemotherapy due to drug resistance and other issues, it is crucial to explore the impact of chemotherapy and immunotherapy on these aspects. In this study, tumor samples from nine LUAD patients, of which four only received surgery and five received neoadjuvant chemotherapy, were subjected to scRNA-seq analysis. In vitro and in vivo assays, including flow cytometry, immunofluorescence, Seahorse assay, and tumor xenograft models, were carried out to validate our findings. A total of 83,622 cells were enrolled for subsequent analyses. The composition of cell types exhibited high heterogeneity across different groups. Functional enrichment analysis revealed that chemotherapy drove significant metabolic reprogramming in tumor cells and macrophages. We identified two subtypes of macrophages: Anti-mac cells (CD45+CD11b+CD86+) and Pro-mac cells (CD45+CD11b+ARG +) and sorted them by flow cytometry. The proportion of Pro-mac cells in LUAD tissues increased significantly after neoadjuvant chemotherapy. Pro-mac cells promote tumor growth and angiogenesis and also suppress tumor immunity. Moreover, by analyzing the remodeling of T and B cells induced by neoadjuvant therapy, we noted that chemotherapy ignited a relatively more robust immune cytotoxic response toward tumor cells. Our study demonstrates that chemotherapy induces metabolic reprogramming within the tumor microenvironment of LUAD, particularly affecting the function and composition of immune cells such as macrophages and T cells. We believe our findings will offer insight into the mechanisms of drug resistance and provide novel therapeutic targets for LUAD in the future.

    1. Cancer Biology
    2. Cell Biology
    Maojin Tian, Le Yang ... Peiqing Zhao
    Research Article

    TIPE (TNFAIP8) has been identified as an oncogene and participates in tumor biology. However, how its role in the metabolism of tumor cells during melanoma development remains unclear. Here, we demonstrated that TIPE promoted glycolysis by interacting with pyruvate kinase M2 (PKM2) in melanoma. We found that TIPE-induced PKM2 dimerization, thereby facilitating its translocation from the cytoplasm to the nucleus. TIPE-mediated PKM2 dimerization consequently promoted HIF-1α activation and glycolysis, which contributed to melanoma progression and increased its stemness features. Notably, TIPE specifically phosphorylated PKM2 at Ser 37 in an extracellular signal-regulated kinase (ERK)-dependent manner. Consistently, the expression of TIPE was positively correlated with the levels of PKM2 Ser37 phosphorylation and cancer stem cell (CSC) markers in melanoma tissues from clinical samples and tumor bearing mice. In summary, our findings indicate that the TIPE/PKM2/HIF-1α signaling pathway plays a pivotal role in promoting CSC properties by facilitating the glycolysis, which would provide a promising therapeutic target for melanoma intervention.