Fate mapping analysis reveals a novel murine dermal migratory Langerhans-like cell population

  1. Jianpeng Sheng  Is a corresponding author
  2. Qi Chen
  3. Xiaoting Wu
  4. Yu Wen Dong
  5. Johannes U Mayer
  6. Junlei Zhang
  7. Lin Wang
  8. Xueli Bai
  9. Tingbo Liang
  10. Yang Ho Sung
  11. Wilson Wen Bin Goh
  12. Franca Ronchese
  13. Christiane Ruedl  Is a corresponding author
  1. Zhejiang University School of Medicine, China
  2. Nanyang Technological University, Singapore
  3. Malaghan Institute of Medical Research, New Zealand
  4. Zhejiang University, China

Abstract

Dendritic cells residing in the skin represent a large family of antigen presenting cells, ranging from long-lived Langerhans cells (LC) in the epidermis to various distinct classical dendritic cell subsets in the dermis. Through genetic fate mapping analysis and single cell RNA sequencing we have identified a novel separate population of LC-independent CD207+CD326+ LClike cells in the dermis that homed at a slow rate to the LNs. These LClike cells are long-lived and radioresistant but, unlike LCs, they are gradually replenished by bone-marrow-derived precursors under steady state. LClike cells together with cDC1s are the main migratory CD207+CD326+ cell fractions present in the LN and not, as currently assumed, LCs, which are barely detectable, if at all. Cutaneous tolerance to haptens depends on LClike cells, whereas LCs suppress effector CD8+ T cell functions and inflammation locally in the skin during contact hypersensitivity. These findings bring new insights into the dynamism of cutaneous dendritic cells and their function opening novel avenues in the development of treatments to cure inflammatory skin disorders.

Data availability

All RNA-sequencing data have been deposited in the Gene Expression Omnibus public database under accession number GSE139877. Single cell RNAseq have been deposited into NCBI SRA database with BioProject ID: PRJNA625270.

The following data sets were generated

Article and author information

Author details

  1. Jianpeng Sheng

    Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine, Hangzhou, China
    For correspondence
    JSHENG2@e.ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
  2. Qi Chen

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0658-7629
  3. Xiaoting Wu

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0281-8717
  4. Yu Wen Dong

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Johannes U Mayer

    Malaghan Institute of Medical Research, Malaghan Institute of Medical Research, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6225-7803
  6. Junlei Zhang

    Zhejiang University School of Medicine, Zhejiang University School of Medicine, Zhejiang, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Lin Wang

    Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xueli Bai

    Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Tingbo Liang

    Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Yang Ho Sung

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  11. Wilson Wen Bin Goh

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  12. Franca Ronchese

    Malaghan Institute of Medical Research, Malaghan Institute of Medical Research, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  13. Christiane Ruedl

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    For correspondence
    ruedl@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5599-6541

Funding

Ministry of Education - Singapore (Tier1)

  • Christiane Ruedl

National Key R&D Program China (2019YFA0803000)

  • Jianpeng Sheng

Health Research Council of New Zealand (Independent Research Organisation grant)

  • Franca Ronchese

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All studies involving mice in Singapore were carried out in strict accordance with the recommendations of the National Advisory Committee for Laboratory Animal Research and all protocols were approved by the Institutional Animal Care and Use Committee of the Nanyang Technological University (ARF-SBS/NIE A-0133; A-0257; A0126, A-18081). For animal work performed in New Zealand, experimental protocols were approved by the Victoria University of Wellington Animal Ethics Committee and performed in accordance with institutional guidelines.

Copyright

© 2021, Sheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,027
    views
  • 447
    downloads
  • 22
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jianpeng Sheng
  2. Qi Chen
  3. Xiaoting Wu
  4. Yu Wen Dong
  5. Johannes U Mayer
  6. Junlei Zhang
  7. Lin Wang
  8. Xueli Bai
  9. Tingbo Liang
  10. Yang Ho Sung
  11. Wilson Wen Bin Goh
  12. Franca Ronchese
  13. Christiane Ruedl
(2021)
Fate mapping analysis reveals a novel murine dermal migratory Langerhans-like cell population
eLife 10:e65412.
https://doi.org/10.7554/eLife.65412

Share this article

https://doi.org/10.7554/eLife.65412

Further reading

    1. Immunology and Inflammation
    Jian Cui, Hua Li ... Congqing Wu
    Short Report

    Systemic blood coagulation accompanies inflammation during severe infections like sepsis and COVID. We previously established a link between coagulopathy and pyroptosis, a vital defense mechanism against infection. During pyroptosis, the formation of gasdermin-D (GSDMD) pores on the plasma membrane leads to the release of tissue factor (TF)-positive microvesicles (MVs) that are procoagulant. Mice lacking GSDMD release fewer of these procoagulant MVs. However, the specific mechanisms coupling the activation of GSDMD to MV release remain unclear. Plasma membrane rupture (PMR) in pyroptosis was recently reported to be actively mediated by the transmembrane protein Ninjurin-1 (NINJ1). Here, we show that NINJ1 promotes procoagulant MV release during pyroptosis. Haploinsufficiency or glycine inhibition of NINJ1 limited the release of procoagulant MVs and inflammatory cytokines, and partially protected against blood coagulation and lethality triggered by bacterial flagellin. Our findings suggest a crucial role for NINJ1-dependent PMR in inflammasome-induced blood coagulation and inflammation.

    1. Immunology and Inflammation
    2. Neuroscience
    Rocio Vicario, Stamatina Fragkogianni ... Frédéric Geissmann
    Research Article

    Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however, few studies have investigated its role in neurodegenerative processes such as Alzheimer’s disease (AD). Here, we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in humans, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.