Fate mapping analysis reveals a novel murine dermal migratory Langerhans-like cell population

  1. Jianpeng Sheng  Is a corresponding author
  2. Qi Chen
  3. Xiaoting Wu
  4. Yu Wen Dong
  5. Johannes U Mayer
  6. Junlei Zhang
  7. Lin Wang
  8. Xueli Bai
  9. Tingbo Liang
  10. Yang Ho Sung
  11. Wilson Wen Bin Goh
  12. Franca Ronchese
  13. Christiane Ruedl  Is a corresponding author
  1. Zhejiang University School of Medicine, China
  2. Nanyang Technological University, Singapore
  3. Malaghan Institute of Medical Research, New Zealand
  4. Zhejiang University, China

Abstract

Dendritic cells residing in the skin represent a large family of antigen presenting cells, ranging from long-lived Langerhans cells (LC) in the epidermis to various distinct classical dendritic cell subsets in the dermis. Through genetic fate mapping analysis and single cell RNA sequencing we have identified a novel separate population of LC-independent CD207+CD326+ LClike cells in the dermis that homed at a slow rate to the LNs. These LClike cells are long-lived and radioresistant but, unlike LCs, they are gradually replenished by bone-marrow-derived precursors under steady state. LClike cells together with cDC1s are the main migratory CD207+CD326+ cell fractions present in the LN and not, as currently assumed, LCs, which are barely detectable, if at all. Cutaneous tolerance to haptens depends on LClike cells, whereas LCs suppress effector CD8+ T cell functions and inflammation locally in the skin during contact hypersensitivity. These findings bring new insights into the dynamism of cutaneous dendritic cells and their function opening novel avenues in the development of treatments to cure inflammatory skin disorders.

Data availability

All RNA-sequencing data have been deposited in the Gene Expression Omnibus public database under accession number GSE139877. Single cell RNAseq have been deposited into NCBI SRA database with BioProject ID: PRJNA625270.

The following data sets were generated

Article and author information

Author details

  1. Jianpeng Sheng

    Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine, Hangzhou, China
    For correspondence
    JSHENG2@e.ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
  2. Qi Chen

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0658-7629
  3. Xiaoting Wu

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0281-8717
  4. Yu Wen Dong

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  5. Johannes U Mayer

    Malaghan Institute of Medical Research, Malaghan Institute of Medical Research, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6225-7803
  6. Junlei Zhang

    Zhejiang University School of Medicine, Zhejiang University School of Medicine, Zhejiang, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Lin Wang

    Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Xueli Bai

    Zhejiang Provincial Key Laboratory of Pancreatic Disease, Zhejiang University School of Medicine, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Tingbo Liang

    Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Yang Ho Sung

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  11. Wilson Wen Bin Goh

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    Competing interests
    The authors declare that no competing interests exist.
  12. Franca Ronchese

    Malaghan Institute of Medical Research, Malaghan Institute of Medical Research, Wellington, New Zealand
    Competing interests
    The authors declare that no competing interests exist.
  13. Christiane Ruedl

    School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
    For correspondence
    ruedl@ntu.edu.sg
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5599-6541

Funding

Ministry of Education - Singapore (Tier1)

  • Christiane Ruedl

National Key R&D Program China (2019YFA0803000)

  • Jianpeng Sheng

Health Research Council of New Zealand (Independent Research Organisation grant)

  • Franca Ronchese

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bernard Malissen, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université, France

Ethics

Animal experimentation: All studies involving mice in Singapore were carried out in strict accordance with the recommendations of the National Advisory Committee for Laboratory Animal Research and all protocols were approved by the Institutional Animal Care and Use Committee of the Nanyang Technological University (ARF-SBS/NIE A-0133; A-0257; A0126, A-18081). For animal work performed in New Zealand, experimental protocols were approved by the Victoria University of Wellington Animal Ethics Committee and performed in accordance with institutional guidelines.

Version history

  1. Received: December 3, 2020
  2. Accepted: March 25, 2021
  3. Accepted Manuscript published: March 26, 2021 (version 1)
  4. Version of Record published: May 10, 2021 (version 2)

Copyright

© 2021, Sheng et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,831
    views
  • 427
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jianpeng Sheng
  2. Qi Chen
  3. Xiaoting Wu
  4. Yu Wen Dong
  5. Johannes U Mayer
  6. Junlei Zhang
  7. Lin Wang
  8. Xueli Bai
  9. Tingbo Liang
  10. Yang Ho Sung
  11. Wilson Wen Bin Goh
  12. Franca Ronchese
  13. Christiane Ruedl
(2021)
Fate mapping analysis reveals a novel murine dermal migratory Langerhans-like cell population
eLife 10:e65412.
https://doi.org/10.7554/eLife.65412

Share this article

https://doi.org/10.7554/eLife.65412

Further reading

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.

    1. Immunology and Inflammation
    2. Medicine
    Joanna C Porter, Jamie Inshaw ... Venizelos Papayannopoulos
    Research Article

    Background:

    Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin.

    Methods:

    Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors.

    Results:

    We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01–2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 μg/mL, p=0.004).

    Conclusions:

    Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin.

    Funding:

    LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust).

    Clinical trial number:

    NCT04359654.