1. Immunology and Inflammation
Download icon

Skin Immunity: A new player in the dermis

  1. Gyohei Egawa
  2. Kenji Kabashima  Is a corresponding author
  1. Department of Dermatology, Kyoto University Graduate School of Medicine, Japan
  2. Singapore Immunology Network and Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore
Insight
  • Cited 0
  • Views 734
  • Annotations
Cite this article as: eLife 2021;10:e68979 doi: 10.7554/eLife.68979

Abstract

Langerhans-like cells located in the dermis can travel to lymph nodes where they modulate immune responses.

Main text

The skin is part of the first line of defense protecting the body from infection. It harbors a range of immune cells, including Langerhans cells (Langerhans, 1868). Initially thought to be part of the nervous system, Langerhans cells play an important role in the defense against pathogens (Schuler and Steinman, 1985).

Due to their characteristic, branch-like morphology, Langerhans cells are considered a subset of dendritic cells, which are bone-marrow derived leucocytes. As such, Langerhans cells have been thought to play an important role in detecting and transporting antigens (signature molecules from pathogens) to the lymph nodes and presenting them to other immune cells such as naïve T cells to initiate an immune response (Kubo et al., 2009).

However, it has been shown that enhanced antigen-specific immune responses in the skin can occur even in the absence of Langerhans cells (Bennett et al., 2005). Moreover, recent cell-fate mapping studies and gene expression analyses have revealed that Langerhans cells derive from the embryo rather than the bone marrow and have properties closer to macrophages than dendritic cells. Dubbed ‘macrophages in dendritic clothing’, the migratory capacity of Langerhans cells to travel from the epidermis to skin-draining lymph nodes has, however, been considered exceptional, especially since macrophages do not leave the tissues they reside in (Doebel et al., 2017).

Now, in eLife, Christiane Ruedl and colleagues at the Zhejiang University School of Medicine, the Nanyang Technological University and the Malaghan Institute of Medical Research – including Jianpeng Sheng as first author – report a new paradigm of Langerhans cells (Sheng et al., 2021). Sheng et al. tracked immune cells in the skin of mice and discovered that unlike other dendritic cells, Langerhans cells do not migrate to the lymph nodes.

Previously, dendritic cells in the skin have been classified into Langerhans cells, which reside in the epidermis, and three other types dendritic cells located in the dermis (Figure 1; Malissen et al., 2014). Sheng et al. have found a fourth population of dendritic cells in the dermis, which turned out to look a lot like Langerhans cells, and named them Langerhans-like cells. These lookalikes shared many signature genes with Langerhans cells.

The roles of dendritic cells in the skin and the lymph nodes.

The skin (left) is an important barrier to pathogens and contains Langerhans cells and four types of dermal dendritic cells. Langerhans cells (dark green) reside in the epidermis (dark green), although they can occasionally migrate into the dermis. The other four types of cells reside in the dermis and consist of Langerhans-like cells (light green), double-negative dendritic cells (yellow), and conventional dendritic cells 1 and 2 (cDC1 and cDC2, shown in red and blue respectively). The four cell types that reside in the dermis can travel through the lymphatic ducts into the skin-draining lymph nodes (right), where they interact with naïve T cells. Langerhans-like cells perform tasks related to immune tolerance, cDC1 cells do cross-presentation of antigens and cDC2 cells are involved in the Th2-type response to fight extracellular parasites and bacterial infection. Double-negative dendritic cells can also travel to the lymph nodes but their role there is not well defined.

Fate-mapping analyses of the bone marrow of mice confirmed that similar to Langerhans cells, Langerhans-like cells were resistant to radiation (which most immune cells are not). However, the lookalikes were gradually replaced by adult bone-marrow cells, suggesting that Langerhans-like cells are derived both from embryonic and adult bone marrow, while Langerhans cells are of embryonic origin.

Notably, Sheng et al. found only Langerhans-like cells, but not Langerhans cells, in the skin-draining lymph nodes, suggesting it is the lookalike cells that are able to travel. Moreover, using transgenic mice that can deplete Langerhans cells, Sheng et al. demonstrated that the lookalikes were found both in the skin and lymph nodes. This indicates that Langerhans cells and lookalike cells are indeed independent cell populations.

Previous research has shown that depending on the circumstances, Langerhans cells may be involved both in inducing dermatitis or reducing inflammation in the skin (Rajesh et al., 2019; Otsuka et al., 2018; Honda et al., 2019). Consistent with previous research, Sheng et al. demonstrated that removing Langerhans cells prolonged skin inflammation against hapten, a small molecule that can cause contact dermatitis (Kaplan et al., 2005). On the other hand, only Langerhans-like cells were able to develop an immune tolerance (that is, unresponsiveness) towards hapten. This may be relevant for maintaining an immunological tolerance to harmless substances in the absence of any obvious inflammation and help maintain homeostasis of the skin. These results indicate that Langerhans cells and Langerhans-like cells have distinct roles in skin immunity.

The finding that epidermal Langerhans cells do not appear to travel to skin-draining lymph nodes comes as a surprise and raises several questions. While Sheng et al. also identified ‘immigrated Langerhans cells’ in the dermis, it remains unclear if they play any role in this location and whether this is indeed their last destination. Also, if Langerhans cells do not migrate to the lymph nodes, how do they pass antigens to other dendritic cells in the skin?

Characterizing the distinct role of each dendritic cell population in the skin has long been one of the central goals of skin immunology. It will be interesting to see if the findings of Sheng et al. also apply to human skin and whether any counterparts of Langerhans-like cells can be identified there. A better understanding of the different roles of dendritic cells in the skin would certainly be beneficial for the development of treatments for various inflammatory skin disorders.

References

    1. Langerhans P
    (1868) Ueber die Nerven der menschlichen Haut
    Archiv Für Pathologische Anatomie Und Physiologie Und Für Klinische Medicin 44:325–337.
    https://doi.org/10.1007/BF01959006

Article and author information

Author details

  1. Gyohei Egawa

    Gyohei Egawa is in the Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6101-4719
  2. Kenji Kabashima

    Kenji Kabashima is in the Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan and the Singapore Immunology Network and Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore

    For correspondence
    kaba@kuhp.kyoto-u.ac.jp
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0773-0554

Publication history

  1. Version of Record published: May 10, 2021 (version 1)

Copyright

© 2021, Egawa and Kabashima

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 734
    Page views
  • 71
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Immunology and Inflammation
    Anders Laustsen et al.
    Tools and Resources Updated

    Plasmacytoid dendritic cells (pDCs) constitute a rare type of immune cell with multifaceted functions, but their potential use as a cell-based immunotherapy is challenged by the scarce cell numbers that can be extracted from blood. Here, we systematically investigate culture parameters for generating pDCs from hematopoietic stem and progenitor cells (HSPCs). Using optimized conditions combined with implementation of HSPC pre-expansion, we generate an average of 465 million HSPC-derived pDCs (HSPC-pDCs) starting from 100,000 cord blood-derived HSPCs. Furthermore, we demonstrate that such protocol allows HSPC-pDC generation from whole-blood HSPCs, and these cells display a pDC phenotype and function. Using GMP-compliant medium, we observe a remarkable loss of TLR7/9 responses, which is rescued by ascorbic acid supplementation. Ascorbic acid induces transcriptional signatures associated with pDC-specific innate immune pathways, suggesting an undescribed role of ascorbic acid for pDC functionality. This constitutes the first protocol for generating pDCs from whole blood and lays the foundation for investigating HSPC-pDCs for cell-based immunotherapy.

    1. Cell Biology
    2. Immunology and Inflammation
    Janine JG Arts et al.
    Research Article Updated

    Upon inflammation, leukocytes rapidly transmigrate across the endothelium to enter the inflamed tissue. Evidence accumulates that leukocytes use preferred exit sites, alhough it is not yet clear how these hotspots in the endothelium are defined and how they are recognized by the leukocyte. Using lattice light sheet microscopy, we discovered that leukocytes prefer endothelial membrane protrusions at cell junctions for transmigration. Phenotypically, these junctional membrane protrusions are present in an asymmetric manner, meaning that one endothelial cell shows the protrusion and the adjacent one does not. Consequently, leukocytes cross the junction by migrating underneath the protruding endothelial cell. These protrusions depend on Rac1 activity and by using a photo-activatable Rac1 probe, we could artificially generate local exit-sites for leukocytes. Overall, we have discovered a new mechanism that uses local induced junctional membrane protrusions to facilitate/steer the leukocyte escape/exit from inflamed vessel walls.