insomniac links the development and function of a sleep regulatory circuit

  1. Qiuling Li
  2. Hyunsoo Jang
  3. Kayla Y Lim
  4. Alexie Lessing
  5. Nicholas Stavropoulos  Is a corresponding author
  1. New York University School of Medicine, United States

Abstract

Although many genes are known to influence sleep, when and how they impact sleep-regulatory circuits remain ill-defined. Here we show that Insomniac (Inc), a conserved adaptor for the autism-associated Cul3 ubiquitin ligase, acts in a restricted period of neuronal development to impact sleep in adult Drosophila. The loss of inc causes structural and functional alterations within the mushroom body, a center for sensory integration, associative learning, and sleep regulation. In inc mutants, mushroom body neurons are produced in excess, develop anatomical defects that impede circuit assembly, and are unable to promote sleep when activated in adulthood. Our findings link neurogenesis and postmitotic development of sleep-regulatory neurons to their adult function and suggest that developmental perturbations of circuits that couple sensory inputs and sleep may underlie sleep dysfunction in neurodevelopmental disorders.

Data availability

Data for all figures and code used to analyze sleep are included in the supporting files.

Article and author information

Author details

  1. Qiuling Li

    Department of Neuroscience and Physiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hyunsoo Jang

    Department of Neuroscience and Physiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9191-3697
  3. Kayla Y Lim

    Department of Neuroscience and Physiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexie Lessing

    Department of Neuroscience and Physiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2044-7822
  5. Nicholas Stavropoulos

    Department of Neuroscience and Physiology, New York University School of Medicine, New York, United States
    For correspondence
    stavropoulos@waksman.rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5915-2760

Funding

Howard Hughes Medical Institute (International Student Research Fellowship)

  • Qiuling Li

Irma T. Hirschl Trust (Career Scientist Award)

  • Nicholas Stavropoulos

National Institute of Neurological Disorders and Stroke (R01NS112844)

  • Nicholas Stavropoulos

National Institute of Neurological Disorders and Stroke (R21NS111304)

  • Nicholas Stavropoulos

G. Harold and Leila Y. Mathers Foundation

  • Nicholas Stavropoulos

Whitehall Foundation (2013-05-78)

  • Nicholas Stavropoulos

Alfred P. Sloan Foundation

  • Nicholas Stavropoulos

Leon Levy Foundation

  • Nicholas Stavropoulos

Brain and Behavior Research Foundation (NARSAD Young Investigator)

  • Nicholas Stavropoulos

Sleep Research Society Foundation (J. Christian Gillin,M.D. Research Award)

  • Nicholas Stavropoulos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,857
    views
  • 235
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qiuling Li
  2. Hyunsoo Jang
  3. Kayla Y Lim
  4. Alexie Lessing
  5. Nicholas Stavropoulos
(2021)
insomniac links the development and function of a sleep regulatory circuit
eLife 10:e65437.
https://doi.org/10.7554/eLife.65437

Share this article

https://doi.org/10.7554/eLife.65437

Further reading

    1. Developmental Biology
    2. Neuroscience
    Taro Ichimura, Taishi Kakizuka ... Takeharu Nagai
    Tools and Resources

    We established a volumetric trans-scale imaging system with an ultra-large field-of-view (FOV) that enables simultaneous observation of millions of cellular dynamics in centimeter-wide three-dimensional (3D) tissues and embryos. Using a custom-made giant lens system with a magnification of ×2 and a numerical aperture (NA) of 0.25, and a CMOS camera with more than 100 megapixels, we built a trans-scale scope AMATERAS-2, and realized fluorescence imaging with a transverse spatial resolution of approximately 1.1 µm across an FOV of approximately 1.5×1.0 cm2. The 3D resolving capability was realized through a combination of optical and computational sectioning techniques tailored for our low-power imaging system. We applied the imaging technique to 1.2 cm-wide section of mouse brain, and successfully observed various regions of the brain with sub-cellular resolution in a single FOV. We also performed time-lapse imaging of a 1-cm-wide vascular network during quail embryo development for over 24 hr, visualizing the movement of over 4.0×105 vascular endothelial cells and quantitatively analyzing their dynamics. Our results demonstrate the potential of this technique in accelerating production of comprehensive reference maps of all cells in organisms and tissues, which contributes to understanding developmental processes, brain functions, and pathogenesis of disease, as well as high-throughput quality check of tissues used for transplantation medicine.

    1. Developmental Biology
    2. Genetics and Genomics
    Mehul Vora, Jonathan Dietz ... Cathy Savage-Dunn
    Research Article

    Smads and their transcription factor partners mediate the transcriptional responses of target cells to secreted ligands of the transforming growth factor-β (TGF-β) family, including those of the conserved bone morphogenetic protein (BMP) family, yet only a small number of direct target genes have been well characterized. In C. elegans, the BMP2/4 ortholog DBL-1 regulates multiple biological functions, including body size, via a canonical receptor-Smad signaling cascade. Here, we identify functional binding sites for SMA-3/Smad and its transcriptional partner SMA-9/Schnurri based on ChIP-seq peaks (identified by modEncode) and expression differences of nearby genes identified from RNA-seq analysis of corresponding mutants. We found that SMA-3 and SMA-9 have both overlapping and unique target genes. At a genome-wide scale, SMA-3/Smad acts as a transcriptional activator, whereas SMA-9/Schnurri direct targets include both activated and repressed genes. Mutations in sma-9 partially suppress the small body size phenotype of sma-3, suggesting some level of antagonism between these factors and challenging the prevailing model for Schnurri function. Functional analysis of target genes revealed a novel role in body size for genes involved in one-carbon metabolism and in the endoplasmic reticulum (ER) secretory pathway, including the disulfide reductase dpy-11. Our findings indicate that Smads and SMA-9/Schnurri have previously unappreciated complex genetic and genomic regulatory interactions that in turn regulate the secretion of extracellular components like collagen into the cuticle to mediate body size regulation.