insomniac links the development and function of a sleep regulatory circuit

  1. Qiuling Li
  2. Hyunsoo Jang
  3. Kayla Y Lim
  4. Alexie Lessing
  5. Nicholas Stavropoulos  Is a corresponding author
  1. New York University School of Medicine, United States
  2. Rutgers University, United States

Abstract

Although many genes are known to influence sleep, when and how they impact sleep-regulatory circuits remain ill-defined. Here we show that Insomniac (Inc), a conserved adaptor for the autism-associated Cul3 ubiquitin ligase, acts in a restricted period of neuronal development to impact sleep in adult Drosophila. The loss of inc causes structural and functional alterations within the mushroom body, a center for sensory integration, associative learning, and sleep regulation. In inc mutants, mushroom body neurons are produced in excess, develop anatomical defects that impede circuit assembly, and are unable to promote sleep when activated in adulthood. Our findings link neurogenesis and postmitotic development of sleep-regulatory neurons to their adult function and suggest that developmental perturbations of circuits that couple sensory inputs and sleep may underlie sleep dysfunction in neurodevelopmental disorders.

Data availability

Data for all figures and code used to analyze sleep are included in the supporting files.

Article and author information

Author details

  1. Qiuling Li

    Department of Neuroscience and Physiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Hyunsoo Jang

    Department of Neuroscience and Physiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9191-3697
  3. Kayla Y Lim

    Department of Neuroscience and Physiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alexie Lessing

    Department of Neuroscience and Physiology, New York University School of Medicine, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2044-7822
  5. Nicholas Stavropoulos

    Waksman Institute, Rutgers University, Piscataway, United States
    For correspondence
    stavropoulos@waksman.rutgers.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5915-2760

Funding

Howard Hughes Medical Institute (International Student Research Fellowship)

  • Qiuling Li

Irma T. Hirschl Trust (Career Scientist Award)

  • Nicholas Stavropoulos

National Institute of Neurological Disorders and Stroke (R01NS112844)

  • Nicholas Stavropoulos

National Institute of Neurological Disorders and Stroke (R21NS111304)

  • Nicholas Stavropoulos

G. Harold and Leila Y. Mathers Foundation

  • Nicholas Stavropoulos

Whitehall Foundation (2013-05-78)

  • Nicholas Stavropoulos

Alfred P. Sloan Foundation

  • Nicholas Stavropoulos

Leon Levy Foundation

  • Nicholas Stavropoulos

Brain and Behavior Research Foundation (NARSAD Young Investigator)

  • Nicholas Stavropoulos

Sleep Research Society Foundation (J. Christian Gillin,M.D. Research Award)

  • Nicholas Stavropoulos

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Li et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,872
    views
  • 236
    downloads
  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Qiuling Li
  2. Hyunsoo Jang
  3. Kayla Y Lim
  4. Alexie Lessing
  5. Nicholas Stavropoulos
(2021)
insomniac links the development and function of a sleep regulatory circuit
eLife 10:e65437.
https://doi.org/10.7554/eLife.65437

Share this article

https://doi.org/10.7554/eLife.65437

Further reading

    1. Developmental Biology
    Thomas A Bos, Elizaveta Polyakova ... Monique RM Jongbloed
    Research Article

    Human autonomic neuronal cell models are emerging as tools for modelling diseases such as cardiac arrhythmias. In this systematic review, we compared thirty-three articles applying fourteen different protocols to generate sympathetic neurons and three different procedures to produce parasympathetic neurons. All methods involved the differentiation of human pluripotent stem cells, and none employed permanent or reversible cell immortalization. Almost all protocols were reproduced in multiple pluripotent stem cell lines, and over half show evidence of neural firing capacity. Common limitations in the field are a lack of three-dimensional models and models including multiple cell types. Sympathetic neuron differentiation protocols largely mirrored embryonic development, with the notable absence of migration, axon extension, and target-specificity cues. Parasympathetic neuron differentiation protocols may be improved by including several embryonic cues promoting cell survival, cell maturation, or ion channel expression. Moreover, additional markers to define parasympathetic neurons in vitro may support the validity of these protocols. Nonetheless, four sympathetic neuron differentiation protocols and one parasympathetic neuron differentiation protocol reported more than two thirds of cells expressing autonomic neuron markers. Altogether, these protocols promise to open new research avenues of human autonomic neuron development and disease modelling.

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article Updated

    The establishment and growth of the arterial endothelium require the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1, and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4, or venous-enriched NR2F2. This cohort of well-characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signaling pathways with arterial gene expression.