CTP and parS coordinate ParB partition complex dynamics and ParA-ATPase activation for ParABS-mediated DNA partitioning

  1. James A Taylor
  2. Yeonee Seol
  3. Jagat Budhathoki
  4. Keir C Neuman
  5. Kiyoshi Mizuuchi  Is a corresponding author
  1. University of Oxford, United Kingdom
  2. National Heart, Lung and Blood Institute, National Institutes of Health, United States
  3. NIDDK/NIH, United States
  4. National Institutes of Health, United States

Abstract

ParABS partition systems, comprising the centromere-like DNA sequence parS, the parS-binding ParB-CTPase and the nucleoid-binding ParA-ATPase, ensure faithful segregation of bacterial chromosomes and low-copy-number plasmids. F-plasmid partition complexes containing ParBF and parSF move by generating and following a local concentration gradient of nucleoid-bound ParAF. However, the process through which ParBF activates ParAF-ATPase has not been defined. We studied CTP- and parSF-modulated ParAF-ParBF complex assembly, in which DNA-bound ParAF-ATP dimers are activated for ATP hydrolysis by interacting with two ParBF N-terminal domains. CTP or parSF enhances the ATPase rate without significantly accelerating ParAF-ParBF complex assembly. Together, parSF and CTP accelerate ParAF-ParBF assembly without further significant increase in ATPase rate. Magnetic-tweezers experiments showed that CTP promotes multiple ParBF loading onto parSF-containing DNA, generating condensed partition complex-like assemblies. We propose that ParBF in the partition complex adopts a conformation that enhances ParBF-ParBF and ParAF-ParBF interactions promoting efficient partitioning.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all relevant figures.

Article and author information

Author details

  1. James A Taylor

    Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Yeonee Seol

    Laboratory of Single Molecule Biophysics, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Jagat Budhathoki

    NIDDK/NIH, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Keir C Neuman

    National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0863-5671
  5. Kiyoshi Mizuuchi

    NIDDK/NIH, Bethesda, United States
    For correspondence
    kiyoshimi@niddk.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8193-9244

Funding

NIDDK/NIH (Intramural Research Fund)

  • Kiyoshi Mizuuchi

NHLBI/NIH (Intramural Research Fund)

  • Keir C Neuman

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,195
    views
  • 152
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. James A Taylor
  2. Yeonee Seol
  3. Jagat Budhathoki
  4. Keir C Neuman
  5. Kiyoshi Mizuuchi
(2021)
CTP and parS coordinate ParB partition complex dynamics and ParA-ATPase activation for ParABS-mediated DNA partitioning
eLife 10:e65651.
https://doi.org/10.7554/eLife.65651

Share this article

https://doi.org/10.7554/eLife.65651

Further reading

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.