Epigenetic analysis of Paget's disease of bone identifies differentially methylated loci that predict disease status

  1. Ilhame Diboun
  2. Sachin Wani
  3. Stuart H Ralston
  4. Omar M E Albagha  Is a corresponding author
  1. Hamad Bin Khalifa University, Qatar
  2. University of Edinburgh, United Kingdom

Abstract

Paget's Disease of Bone (PDB) is characterized by focal increases in disorganized bone remodeling. This study aims to characterize PDB associated changes in DNA methylation profiles in patients' blood. Meta-analysis of data from the discovery and cross-validation set, each comprising of 116 PDB cases and 130 controls, revealed significant differences in DNA methylation at 14 CpG sites, 4 CpG islands, and 6 gene-body regions. These loci, including two characterized as functional through expression quantitative trait-methylation (eQTM) analysis, were associated with functions related to osteoclast differentiation, mechanical loading, immune function, and viral infection. A multivariate classifier based on discovery samples was found to discriminate PDB cases and controls from the cross-validation with a sensitivity of 0.84, specificity of 0.81, and an area under curve of 92.8%. In conclusion, this study has shown for the first time that epigenetic factors contribute to the pathogenesis of PDB and may offer diagnostic markers for prediction of the disease.

Data availability

Raw and processed methylation data generated in this study can be found at GEO under the accession GSE163970.

The following data sets were generated

Article and author information

Author details

  1. Ilhame Diboun

    College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
    Competing interests
    No competing interests declared.
  2. Sachin Wani

    Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  3. Stuart H Ralston

    Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    Stuart H Ralston, Prof S H Ralston has received research funding from Amgen, Eli Lilly, Novartis, and Pfizerunrelated to the submitted work. The author has no other competing interests to declare..
  4. Omar M E Albagha

    College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
    For correspondence
    oalbagha@hbku.edu.qa
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5916-5983

Funding

European Research Council (FP7/2007-2013)

  • Ilhame Diboun

European Research Council (787270-Paget-Advance)

  • Stuart H Ralston

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the UK Multicenter Research Ethics Committee for Scotland(MREC01/0/53) and NHS Lothian, Edinburgh (08/S1104/8) ethics review committees. Allparticipants provided written informed consent.

Copyright

© 2021, Diboun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 874
    views
  • 132
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ilhame Diboun
  2. Sachin Wani
  3. Stuart H Ralston
  4. Omar M E Albagha
(2021)
Epigenetic analysis of Paget's disease of bone identifies differentially methylated loci that predict disease status
eLife 10:e65715.
https://doi.org/10.7554/eLife.65715

Share this article

https://doi.org/10.7554/eLife.65715

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Omid Gholamalamdari, Tom van Schaik ... Andrew S Belmont
    Research Article

    Models of nuclear genome organization often propose a binary division into active versus inactive compartments yet typically overlook nuclear bodies. Here, we integrated analysis of sequencing and image-based data to compare genome organization in four human cell types relative to three different nuclear locales: the nuclear lamina, nuclear speckles, and nucleoli. Although gene expression correlates mostly with nuclear speckle proximity, DNA replication timing correlates with proximity to multiple nuclear locales. Speckle attachment regions emerge as DNA replication initiation zones whose replication timing and gene composition vary with their attachment frequency. Most facultative LADs retain a partially repressed state as iLADs, despite their positioning in the nuclear interior. Knock out of two lamina proteins, Lamin A and LBR, causes a shift of H3K9me3-enriched LADs from lamina to nucleolus, and a reciprocal relocation of H3K27me3-enriched partially repressed iLADs from nucleolus to lamina. Thus, these partially repressed iLADs appear to compete with LADs for nuclear lamina attachment with consequences for replication timing. The nuclear organization in adherent cells is polarized with nuclear bodies and genomic regions segregating both radially and relative to the equatorial plane. Together, our results underscore the importance of considering genome organization relative to nuclear locales for a more complete understanding of the spatial and functional organization of the human genome.

    1. Chromosomes and Gene Expression
    Ashwin Govindan, Nicholas K Conrad
    Research Article

    O-GlcNAcylation is the reversible post-translational addition of β-N-acetylglucosamine to serine and threonine residues of nuclear and cytoplasmic proteins. It plays an important role in several cellular processes through the modification of thousands of protein substrates. O-GlcNAcylation in humans is mediated by a single essential enzyme, O-GlcNAc transferase (OGT). OGT, together with the sole O-GlcNAcase OGA, form an intricate feedback loop to maintain O-GlcNAc homeostasis in response to changes in cellular O-GlcNAc using a dynamic mechanism involving nuclear retention of its fourth intron. However, the molecular mechanism of this dynamic regulation remains unclear. Using an O-GlcNAc responsive GFP reporter cell line, we identify SFSWAP, a poorly characterized splicing factor, as a trans-acting factor regulating OGT intron detention. We show that SFSWAP is a global regulator of retained intron splicing and exon skipping that primarily acts as a negative regulator of splicing. In contrast, knockdown of SFSWAP leads to reduced inclusion of a ‘decoy exon’ present in the OGT retained intron which may mediate its role in OGT intron detention. Global analysis of decoy exon inclusion in SFSWAP and UPF1 double knockdown cells indicate altered patterns of decoy exon usage. Together, these data indicate a role for SFSWAP as a global negative regulator of pre-mRNA splicing and positive regulator of intron retention.