Epigenetic analysis of Paget's disease of bone identifies differentially methylated loci that predict disease status

  1. Ilhame Diboun
  2. Sachin Wani
  3. Stuart H Ralston
  4. Omar M E Albagha  Is a corresponding author
  1. Hamad Bin Khalifa University, Qatar
  2. University of Edinburgh, United Kingdom

Abstract

Paget's Disease of Bone (PDB) is characterized by focal increases in disorganized bone remodeling. This study aims to characterize PDB associated changes in DNA methylation profiles in patients' blood. Meta-analysis of data from the discovery and cross-validation set, each comprising of 116 PDB cases and 130 controls, revealed significant differences in DNA methylation at 14 CpG sites, 4 CpG islands, and 6 gene-body regions. These loci, including two characterized as functional through expression quantitative trait-methylation (eQTM) analysis, were associated with functions related to osteoclast differentiation, mechanical loading, immune function, and viral infection. A multivariate classifier based on discovery samples was found to discriminate PDB cases and controls from the cross-validation with a sensitivity of 0.84, specificity of 0.81, and an area under curve of 92.8%. In conclusion, this study has shown for the first time that epigenetic factors contribute to the pathogenesis of PDB and may offer diagnostic markers for prediction of the disease.

Data availability

Raw and processed methylation data generated in this study can be found at GEO under the accession GSE163970.

The following data sets were generated

Article and author information

Author details

  1. Ilhame Diboun

    College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
    Competing interests
    No competing interests declared.
  2. Sachin Wani

    Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  3. Stuart H Ralston

    Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    Stuart H Ralston, Prof S H Ralston has received research funding from Amgen, Eli Lilly, Novartis, and Pfizerunrelated to the submitted work. The author has no other competing interests to declare..
  4. Omar M E Albagha

    College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
    For correspondence
    oalbagha@hbku.edu.qa
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5916-5983

Funding

European Research Council (FP7/2007-2013)

  • Omar M E Albagha

European Research Council (787270-Paget-Advance)

  • Stuart H Ralston

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the UK Multicenter Research Ethics Committee for Scotland(MREC01/0/53) and NHS Lothian, Edinburgh (08/S1104/8) ethics review committees. Allparticipants provided written informed consent.

Copyright

© 2021, Diboun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 850
    views
  • 131
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ilhame Diboun
  2. Sachin Wani
  3. Stuart H Ralston
  4. Omar M E Albagha
(2021)
Epigenetic analysis of Paget's disease of bone identifies differentially methylated loci that predict disease status
eLife 10:e65715.
https://doi.org/10.7554/eLife.65715

Share this article

https://doi.org/10.7554/eLife.65715

Further reading

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Maruti Nandan Rai, Qing Lan ... Koon Ho Wong
    Research Article Updated

    Candida glabrata can thrive inside macrophages and tolerate high levels of azole antifungals. These innate abilities render infections by this human pathogen a clinical challenge. How C. glabrata reacts inside macrophages and what is the molecular basis of its drug tolerance are not well understood. Here, we mapped genome-wide RNA polymerase II (RNAPII) occupancy in C. glabrata to delineate its transcriptional responses during macrophage infection in high temporal resolution. RNAPII profiles revealed dynamic C. glabrata responses to macrophages with genes of specialized pathways activated chronologically at different times of infection. We identified an uncharacterized transcription factor (CgXbp1) important for the chronological macrophage response, survival in macrophages, and virulence. Genome-wide mapping of CgXbp1 direct targets further revealed its multi-faceted functions, regulating not only virulence-related genes but also genes associated with drug resistance. Finally, we showed that CgXbp1 indeed also affects fluconazole resistance. Overall, this work presents a powerful approach for examining host-pathogen interaction and uncovers a novel transcription factor important for C. glabrata’s survival in macrophages and drug tolerance.

    1. Chromosomes and Gene Expression
    2. Neuroscience
    Robyn D Moir, Emilio Merheb ... Ian M Willis
    Research Article

    Pathogenic variants in subunits of RNA polymerase (Pol) III cause a spectrum of Polr3-related neurodegenerative diseases including 4H leukodystrophy. Disease onset occurs from infancy to early adulthood and is associated with a variable range and severity of neurological and non-neurological features. The molecular basis of Polr3-related disease pathogenesis is unknown. We developed a postnatal whole-body mouse model expressing pathogenic Polr3a mutations to examine the molecular mechanisms by which reduced Pol III transcription results primarily in central nervous system phenotypes. Polr3a mutant mice exhibit behavioral deficits, cerebral pathology and exocrine pancreatic atrophy. Transcriptome and immunohistochemistry analyses of cerebra during disease progression show a reduction in most Pol III transcripts, induction of innate immune and integrated stress responses and cell-type-specific gene expression changes reflecting neuron and oligodendrocyte loss and microglial activation. Earlier in the disease when integrated stress and innate immune responses are minimally induced, mature tRNA sequencing revealed a global reduction in tRNA levels and an altered tRNA profile but no changes in other Pol III transcripts. Thus, changes in the size and/or composition of the tRNA pool have a causal role in disease initiation. Our findings reveal different tissue- and brain region-specific sensitivities to a defect in Pol III transcription.