Epigenetic analysis of Paget's disease of bone identifies differentially methylated loci that predict disease status

  1. Ilhame Diboun
  2. Sachin Wani
  3. Stuart H Ralston
  4. Omar M E Albagha  Is a corresponding author
  1. Hamad Bin Khalifa University, Qatar
  2. University of Edinburgh, United Kingdom

Abstract

Paget's Disease of Bone (PDB) is characterized by focal increases in disorganized bone remodeling. This study aims to characterize PDB associated changes in DNA methylation profiles in patients' blood. Meta-analysis of data from the discovery and cross-validation set, each comprising of 116 PDB cases and 130 controls, revealed significant differences in DNA methylation at 14 CpG sites, 4 CpG islands, and 6 gene-body regions. These loci, including two characterized as functional through expression quantitative trait-methylation (eQTM) analysis, were associated with functions related to osteoclast differentiation, mechanical loading, immune function, and viral infection. A multivariate classifier based on discovery samples was found to discriminate PDB cases and controls from the cross-validation with a sensitivity of 0.84, specificity of 0.81, and an area under curve of 92.8%. In conclusion, this study has shown for the first time that epigenetic factors contribute to the pathogenesis of PDB and may offer diagnostic markers for prediction of the disease.

Data availability

Raw and processed methylation data generated in this study can be found at GEO under the accession GSE163970.

The following data sets were generated

Article and author information

Author details

  1. Ilhame Diboun

    College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
    Competing interests
    No competing interests declared.
  2. Sachin Wani

    Centre for Genomic and Experimental Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    No competing interests declared.
  3. Stuart H Ralston

    Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    Stuart H Ralston, Prof S H Ralston has received research funding from Amgen, Eli Lilly, Novartis, and Pfizerunrelated to the submitted work. The author has no other competing interests to declare..
  4. Omar M E Albagha

    College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
    For correspondence
    oalbagha@hbku.edu.qa
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5916-5983

Funding

European Research Council (FP7/2007-2013)

  • Omar M E Albagha

European Research Council (787270-Paget-Advance)

  • Stuart H Ralston

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The study was approved by the UK Multicenter Research Ethics Committee for Scotland(MREC01/0/53) and NHS Lothian, Edinburgh (08/S1104/8) ethics review committees. Allparticipants provided written informed consent.

Copyright

© 2021, Diboun et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 867
    views
  • 132
    downloads
  • 10
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ilhame Diboun
  2. Sachin Wani
  3. Stuart H Ralston
  4. Omar M E Albagha
(2021)
Epigenetic analysis of Paget's disease of bone identifies differentially methylated loci that predict disease status
eLife 10:e65715.
https://doi.org/10.7554/eLife.65715

Share this article

https://doi.org/10.7554/eLife.65715

Further reading

    1. Chromosomes and Gene Expression
    Shihui Chen, Carolyn Marie Phillips
    Research Article

    RNA interference (RNAi) is a conserved pathway that utilizes Argonaute proteins and their associated small RNAs to exert gene regulatory function on complementary transcripts. While the majority of germline-expressed RNAi proteins reside in perinuclear germ granules, it is unknown whether and how RNAi pathways are spatially organized in other cell types. Here, we find that the small RNA biogenesis machinery is spatially and temporally organized during Caenorhabditis elegans embryogenesis. Specifically, the RNAi factor, SIMR-1, forms visible concentrates during mid-embryogenesis that contain an RNA-dependent RNA polymerase, a poly-UG polymerase, and the unloaded nuclear Argonaute protein, NRDE-3. Curiously, coincident with the appearance of the SIMR granules, the small RNAs bound to NRDE-3 switch from predominantly CSR-class 22G-RNAs to ERGO-dependent 22G-RNAs. NRDE-3 binds ERGO-dependent 22G-RNAs in the somatic cells of larvae and adults to silence ERGO-target genes; here we further demonstrate that NRDE-3-bound, CSR-class 22G-RNAs repress transcription in oocytes. Thus, our study defines two separable roles for NRDE-3, targeting germline-expressed genes during oogenesis to promote global transcriptional repression, and switching during embryogenesis to repress recently duplicated genes and retrotransposons in somatic cells, highlighting the plasticity of Argonaute proteins and the need for more precise temporal characterization of Argonaute-small RNA interactions.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Steven Henikoff, David L Levens
    Insight

    A new method for mapping torsion provides insights into the ways that the genome responds to the torsion generated by RNA polymerase II.