Quantifying absolute gene expression profiles reveals distinct regulation of central carbon metabolism genes in yeast

  1. Rosemary Yu
  2. Egor Vorontsov
  3. Carina Sihlbom
  4. Jens Nielsen  Is a corresponding author
  1. Chalmers University of Technology, Sweden
  2. University of Gothenburg, Sweden

Abstract

In addition to controlled expression of genes by specific regulatory circuits, the abundance of proteins and transcripts can also be influenced by physiological states of the cell such as growth rate and metabolism. Here we examine the control of gene expression by growth rate and metabolism, by analyzing a multi-omics dataset consisting of absolute-quantitative abundances of the transcriptome, proteome, and amino acids in 22 steady-state yeast cultures. We find that transcription and translation are coordinately controlled by the cell growth rate via RNA polymerase II and ribosome abundance, but they are independently controlled by nitrogen metabolism via amino acid and nucleotide availabilities. Genes in central carbon metabolism, however, are distinctly regulated and do not respond to the cell growth rate or nitrogen metabolism as all other genes. Understanding these effects allows the confounding factors of growth rate and metabolism to be accounted for in gene expression profiling studies.

Data availability

Processed quantitative transcriptomics and proteomics data are in Supplementary Table 2 and 3. Processed intracellular amino acid concentrations are in Supplementary Table 4. Raw RNAseq data are available at ArrayExpress, accession E-MTAB-9117. The mass spectrometry proteomics data are deposited to the Proteome Xchange Consortium via the PRIDE partner repository with dataset identifier PXD021218.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Rosemary Yu

    Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  2. Egor Vorontsov

    Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  3. Carina Sihlbom

    Proteomics core facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  4. Jens Nielsen

    Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
    For correspondence
    nielsenj@chalmers.se
    Competing interests
    Jens Nielsen, J.N. is the CEO of the BioInnovation Institute, Denmark..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9955-6003

Funding

Novo Nordisk Fonden (NNF10CC1016517)

  • Rosemary Yu
  • Jens Nielsen

Knut och Alice Wallenbergs Stiftelse

  • Rosemary Yu
  • Jens Nielsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,145
    views
  • 272
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rosemary Yu
  2. Egor Vorontsov
  3. Carina Sihlbom
  4. Jens Nielsen
(2021)
Quantifying absolute gene expression profiles reveals distinct regulation of central carbon metabolism genes in yeast
eLife 10:e65722.
https://doi.org/10.7554/eLife.65722

Share this article

https://doi.org/10.7554/eLife.65722

Further reading

    1. Cell Biology
    Zewei Zhao, Longyun Hu ... Zhonghan Yang
    Research Article

    The induction of adipose thermogenesis plays a critical role in maintaining body temperature and improving metabolic homeostasis to combat obesity. β3-adrenoceptor (β3-AR) is widely recognized as a canonical β-adrenergic G-protein-coupled receptor (GPCR) that plays a crucial role in mediating adipose thermogenesis in mice. Nonetheless, the limited expression of β3-AR in human adipocytes restricts its clinical application. The objective of this study was to identify a GPCR that is highly expressed in human adipocytes and to explore its potential involvement in adipose thermogenesis. Our research findings have demonstrated that the adhesion G-protein-coupled receptor A3 (ADGRA3), an orphan GPCR, plays a significant role in adipose thermogenesis through its constitutively active effects. ADGRA3 exhibited high expression levels in human adipocytes and mouse brown fat. Furthermore, the knockdown of Adgra3 resulted in an exacerbated obese phenotype and a reduction in the expression of thermogenic markers in mice. Conversely, Adgra3 overexpression activated the adipose thermogenic program and improved metabolic homeostasis in mice without exogenous ligand. We found that ADGRA3 facilitates the biogenesis of beige human or mouse adipocytes in vitro. Moreover, hesperetin was identified as a potential agonist of ADGRA3, capable of inducing adipocyte browning and ameliorating insulin resistance in mice. In conclusion, our study demonstrated that the overexpression of constitutively active ADGRA3 or the activation of ADGRA3 by hesperetin can induce adipocyte browning by Gs-PKA-CREB axis. These findings indicate that the utilization of hesperetin and the selective overexpression of ADGRA3 in adipose tissue could serve as promising therapeutic strategies in the fight against obesity.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Bethany M Bartlett, Yatendra Kumar ... Wendy A Bickmore
    Research Article Updated

    During oncogene-induced senescence there are striking changes in the organisation of heterochromatin in the nucleus. This is accompanied by activation of a pro-inflammatory gene expression programme – the senescence-associated secretory phenotype (SASP) – driven by transcription factors such as NF-κB. The relationship between heterochromatin re-organisation and the SASP has been unclear. Here, we show that TPR, a protein of the nuclear pore complex basket required for heterochromatin re-organisation during senescence, is also required for the very early activation of NF-κB signalling during the stress-response phase of oncogene-induced senescence. This is prior to activation of the SASP and occurs without affecting NF-κB nuclear import. We show that TPR is required for the activation of innate immune signalling at these early stages of senescence and we link this to the formation of heterochromatin-enriched cytoplasmic chromatin fragments thought to bleb off from the nuclear periphery. We show that HMGA1 is also required for cytoplasmic chromatin fragment formation. Together these data suggest that re-organisation of heterochromatin is involved in altered structural integrity of the nuclear periphery during senescence, and that this can lead to activation of cytoplasmic nucleic acid sensing, NF-κB signalling, and activation of the SASP.