Quantifying absolute gene expression profiles reveals distinct regulation of central carbon metabolism genes in yeast

  1. Rosemary Yu
  2. Egor Vorontsov
  3. Carina Sihlbom
  4. Jens Nielsen  Is a corresponding author
  1. Chalmers University of Technology, Sweden
  2. University of Gothenburg, Sweden

Abstract

In addition to controlled expression of genes by specific regulatory circuits, the abundance of proteins and transcripts can also be influenced by physiological states of the cell such as growth rate and metabolism. Here we examine the control of gene expression by growth rate and metabolism, by analyzing a multi-omics dataset consisting of absolute-quantitative abundances of the transcriptome, proteome, and amino acids in 22 steady-state yeast cultures. We find that transcription and translation are coordinately controlled by the cell growth rate via RNA polymerase II and ribosome abundance, but they are independently controlled by nitrogen metabolism via amino acid and nucleotide availabilities. Genes in central carbon metabolism, however, are distinctly regulated and do not respond to the cell growth rate or nitrogen metabolism as all other genes. Understanding these effects allows the confounding factors of growth rate and metabolism to be accounted for in gene expression profiling studies.

Data availability

Processed quantitative transcriptomics and proteomics data are in Supplementary Table 2 and 3. Processed intracellular amino acid concentrations are in Supplementary Table 4. Raw RNAseq data are available at ArrayExpress, accession E-MTAB-9117. The mass spectrometry proteomics data are deposited to the Proteome Xchange Consortium via the PRIDE partner repository with dataset identifier PXD021218.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Rosemary Yu

    Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  2. Egor Vorontsov

    Proteomics Core Facility, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  3. Carina Sihlbom

    Proteomics core facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
    Competing interests
    No competing interests declared.
  4. Jens Nielsen

    Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
    For correspondence
    nielsenj@chalmers.se
    Competing interests
    Jens Nielsen, J.N. is the CEO of the BioInnovation Institute, Denmark..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9955-6003

Funding

Novo Nordisk Fonden (NNF10CC1016517)

  • Rosemary Yu
  • Jens Nielsen

Knut och Alice Wallenbergs Stiftelse

  • Rosemary Yu
  • Jens Nielsen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Yu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,125
    views
  • 268
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Rosemary Yu
  2. Egor Vorontsov
  3. Carina Sihlbom
  4. Jens Nielsen
(2021)
Quantifying absolute gene expression profiles reveals distinct regulation of central carbon metabolism genes in yeast
eLife 10:e65722.
https://doi.org/10.7554/eLife.65722

Share this article

https://doi.org/10.7554/eLife.65722

Further reading

    1. Cell Biology
    Fatima Tleiss, Martina Montanari ... C Leopold Kurz
    Research Article

    Multiple gut antimicrobial mechanisms are coordinated in space and time to efficiently fight foodborne pathogens. In Drosophila melanogaster, production of reactive oxygen species (ROS) and antimicrobial peptides (AMPs) together with intestinal cell renewal play a key role in eliminating gut microbes. A complementary mechanism would be to isolate and treat pathogenic bacteria while allowing colonization by commensals. Using real-time imaging to follow the fate of ingested bacteria, we demonstrate that while commensal Lactiplantibacillus plantarum freely circulate within the intestinal lumen, pathogenic strains such as Erwinia carotovora or Bacillus thuringiensis, are blocked in the anterior midgut where they are rapidly eliminated by antimicrobial peptides. This sequestration of pathogenic bacteria in the anterior midgut requires the Duox enzyme in enterocytes, and both TrpA1 and Dh31 in enteroendocrine cells. Supplementing larval food with hCGRP, the human homolog of Dh31, is sufficient to block the bacteria, suggesting the existence of a conserved mechanism. While the immune deficiency (IMD) pathway is essential for eliminating the trapped bacteria, it is dispensable for the blockage. Genetic manipulations impairing bacterial compartmentalization result in abnormal colonization of posterior midgut regions by pathogenic bacteria. Despite a functional IMD pathway, this ectopic colonization leads to bacterial proliferation and larval death, demonstrating the critical role of bacteria anterior sequestration in larval defense. Our study reveals a temporal orchestration during which pathogenic bacteria, but not innocuous, are confined in the anterior part of the midgut in which they are eliminated in an IMD-pathway-dependent manner.

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.