Leveraging the mendelian disorders of the epigenetic machinery to systematically map functional epigenetic variation

  1. Teresa R Luperchio
  2. Leandros Boukas
  3. Li Zhang
  4. Genay Opal Pilarowski
  5. Jenny Jiang
  6. Allison Kalinousky
  7. Kasper Daniel Hansen
  8. Hans T Bjornsson  Is a corresponding author
  1. Johns Hopkins University, United States
  2. Stanford University, United States
  3. Bloomberg School of Public Health, United States

Abstract

Although each Mendelian Disorder of the Epigenetic Machinery (MDEM) has a different causative gene, there are shared disease manifestations. We hypothesize that this phenotypic convergence is a consequence of shared epigenetic alterations. To identify such shared alterations we interrogate chromatin (ATAC-Seq) and expression (RNA-Seq) states in B cells from three MDEM mouse models (Kabuki (KS) types 1&2 and Rubinstein-Taybi (RT1) syndromes). We develop a new approach for the overlap analysis and find extensive overlap primarily localized in gene promoters. We show that disruption of chromatin accessibility at promoters often disrupts downstream gene expression, and identify 587 loci and 264 genes with shared disruption across all three MDEMs. Subtle expression alterations of multiple, IgA-relevant genes, collectively contribute to IgA deficiency in KS1 and RT1, but not in KS2. We propose that the joint study of MDEMs offers a principled approach for systematically mapping functional epigenetic variation in mammals.

Data availability

Sequencing data have been deposited in GEO under accession code GSE162181.

The following data sets were generated

Article and author information

Author details

  1. Teresa R Luperchio

    Department of Biological Chemistry, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Leandros Boukas

    Predoctoral Training Program in Human Genetics, McKusick-Nathans Institute of Genetic Medicine, Department of Biostatistics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Li Zhang

    McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Genay Opal Pilarowski

    Pathology, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Jenny Jiang

    Pediatrics and Genetics, Johns Hopkins University, Stafford, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8310-298X
  6. Allison Kalinousky

    Pediatrics and Genetics, Johns Hopkins University, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7292-8500
  7. Kasper Daniel Hansen

    Biostatistics, Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Hans T Bjornsson

    Pediatrics and Genetics, Johns Hopkins University, Baltimore, United States
    For correspondence
    hbjorns1@jhmi.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6635-6753

Funding

National Institutes of Health (R01GM121459)

  • Kasper Daniel Hansen

Icelandic Centre for Research (195835-051)

  • Hans T Bjornsson

Icelandic Centre for Research (206806-051)

  • Hans T Bjornsson

Icelandic Centre for Research (2010588-0611)

  • Hans T Bjornsson

Louma G Private Foundation (KS grant)

  • Teresa R Luperchio
  • Hans T Bjornsson

Johns Hopkins University (Discovery grant)

  • Leandros Boukas
  • Kasper Daniel Hansen
  • Hans T Bjornsson

Burroughs Wellcome Fund (MD-GEM grant)

  • Leandros Boukas

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: We performed all mouse experiments in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and all were approved by the Animal Care and Use Committee of the Johns Hopkins University. (protocol number: MO18M112).

Copyright

© 2021, Luperchio et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,806
    views
  • 251
    downloads
  • 23
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Teresa R Luperchio
  2. Leandros Boukas
  3. Li Zhang
  4. Genay Opal Pilarowski
  5. Jenny Jiang
  6. Allison Kalinousky
  7. Kasper Daniel Hansen
  8. Hans T Bjornsson
(2021)
Leveraging the mendelian disorders of the epigenetic machinery to systematically map functional epigenetic variation
eLife 10:e65884.
https://doi.org/10.7554/eLife.65884

Share this article

https://doi.org/10.7554/eLife.65884

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.

    1. Computational and Systems Biology
    2. Neuroscience
    Brian DePasquale, Carlos D Brody, Jonathan W Pillow
    Research Article Updated

    Accumulating evidence to make decisions is a core cognitive function. Previous studies have tended to estimate accumulation using either neural or behavioral data alone. Here, we develop a unified framework for modeling stimulus-driven behavior and multi-neuron activity simultaneously. We applied our method to choices and neural recordings from three rat brain regions—the posterior parietal cortex (PPC), the frontal orienting fields (FOF), and the anterior-dorsal striatum (ADS)—while subjects performed a pulse-based accumulation task. Each region was best described by a distinct accumulation model, which all differed from the model that best described the animal’s choices. FOF activity was consistent with an accumulator where early evidence was favored while the ADS reflected near perfect accumulation. Neural responses within an accumulation framework unveiled a distinct association between each brain region and choice. Choices were better predicted from all regions using a comprehensive, accumulation-based framework and different brain regions were found to differentially reflect choice-related accumulation signals: FOF and ADS both reflected choice but ADS showed more instances of decision vacillation. Previous studies relating neural data to behaviorally inferred accumulation dynamics have implicitly assumed that individual brain regions reflect the whole-animal level accumulator. Our results suggest that different brain regions represent accumulated evidence in dramatically different ways and that accumulation at the whole-animal level may be constructed from a variety of neural-level accumulators.