Leveraging the mendelian disorders of the epigenetic machinery to systematically map functional epigenetic variation
Abstract
Although each Mendelian Disorder of the Epigenetic Machinery (MDEM) has a different causative gene, there are shared disease manifestations. We hypothesize that this phenotypic convergence is a consequence of shared epigenetic alterations. To identify such shared alterations we interrogate chromatin (ATAC-Seq) and expression (RNA-Seq) states in B cells from three MDEM mouse models (Kabuki (KS) types 1&2 and Rubinstein-Taybi (RT1) syndromes). We develop a new approach for the overlap analysis and find extensive overlap primarily localized in gene promoters. We show that disruption of chromatin accessibility at promoters often disrupts downstream gene expression, and identify 587 loci and 264 genes with shared disruption across all three MDEMs. Subtle expression alterations of multiple, IgA-relevant genes, collectively contribute to IgA deficiency in KS1 and RT1, but not in KS2. We propose that the joint study of MDEMs offers a principled approach for systematically mapping functional epigenetic variation in mammals.
Data availability
Sequencing data have been deposited in GEO under accession code GSE162181.
-
ATAC-Seq dataNCBI Gene Expression Omnibus, GSE162181.
-
RNA-Seq dataNCBI Gene Expression Omnibus, GSE162181.
Article and author information
Author details
Funding
National Institutes of Health (R01GM121459)
- Kasper Daniel Hansen
Icelandic Centre for Research (195835-051)
- Hans T Bjornsson
Icelandic Centre for Research (206806-051)
- Hans T Bjornsson
Icelandic Centre for Research (2010588-0611)
- Hans T Bjornsson
Louma G Private Foundation (KS grant)
- Teresa R Luperchio
- Hans T Bjornsson
Johns Hopkins University (Discovery grant)
- Leandros Boukas
- Kasper Daniel Hansen
- Hans T Bjornsson
Burroughs Wellcome Fund (MD-GEM grant)
- Leandros Boukas
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: We performed all mouse experiments in accordance with the National Institutes of Health Guide for the Care and Use of Laboratory Animals and all were approved by the Animal Care and Use Committee of the Johns Hopkins University. (protocol number: MO18M112).
Reviewing Editor
- Job Dekker, University of Massachusetts Medical School, United States
Publication history
- Preprint posted: November 8, 2020 (view preprint)
- Received: December 17, 2020
- Accepted: August 27, 2021
- Accepted Manuscript published: August 31, 2021 (version 1)
- Version of Record published: September 15, 2021 (version 2)
Copyright
© 2021, Luperchio et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 1,345
- Page views
-
- 204
- Downloads
-
- 1
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Computational and Systems Biology
Lung squamous cell carcinoma (LUSC) is a type of lung cancer with a dismal prognosis that lacks adequate therapies and actionable targets. This disease is characterized by a sequence of low- and high-grade preinvasive stages with increasing probability of malignant progression. Increasing our knowledge about the biology of these premalignant lesions (PMLs) is necessary to design new methods of early detection and prevention, and to identify the molecular processes that are key for malignant progression. To facilitate this research, we have designed XTABLE (Exploring Transcriptomes of Bronchial Lesions), an open-source application that integrates the most extensive transcriptomic databases of PMLs published so far. With this tool, users can stratify samples using multiple parameters and interrogate PML biology in multiple manners, such as two- and multiple-group comparisons, interrogation of genes of interests, and transcriptional signatures. Using XTABLE, we have carried out a comparative study of the potential role of chromosomal instability scores as biomarkers of PML progression and mapped the onset of the most relevant LUSC pathways to the sequence of LUSC developmental stages. XTABLE will critically facilitate new research for the identification of early detection biomarkers and acquire a better understanding of the LUSC precancerous stages.
-
- Computational and Systems Biology
- Neuroscience
Humans make a number of choices when they walk, such as how fast and for how long. The preferred steady walking speed seems chosen to minimize energy expenditure per distance traveled. But the speed of actual walking bouts is not only steady, but rather a time-varying trajectory, which can also be modulated by task urgency or an individual’s movement vigor. Here we show that speed trajectories and durations of human walking bouts are explained better by an objective to minimize Energy and Time, meaning the total work or energy to reach destination, plus a cost proportional to bout duration. Applied to a computational model of walking dynamics, this objective predicts dynamic speed vs. time trajectories with inverted U shapes. Model and human experiment (N=10) show that shorter bouts are unsteady and dominated by the time and effort of accelerating, and longer ones are steadier and faster and dominated by steady-state time and effort. Individual-dependent vigor may be characterized by the energy one is willing to spend to save a unit of time, which explains why some may walk faster than others, but everyone may have similar-shaped trajectories due to similar walking dynamics. Tradeoffs between energy and time costs can predict transient, steady, and vigor-related aspects of walking.