Organ geometry channels reproductive cell fate in the Arabidopsis ovule primordium

  1. Elvira Hernandez-Lagana
  2. Gabriella Mosca
  3. Ethel Mendocilla-Sato
  4. Nuno Pires
  5. Anja Frey
  6. Alejandro Giraldo-Fonseca
  7. Caroline Michaud
  8. Ueli Grossniklaus
  9. Olivier Hamant
  10. Christophe Godin
  11. Arezki Boudaoud
  12. Daniel Grimanelli
  13. Daphné Autran  Is a corresponding author
  14. Célia Baroux  Is a corresponding author
  1. IRD, CIRAD, France
  2. University of Zürich, Switzerland
  3. Institut de Recherche pour le Développement, France
  4. Université de Lyon, ENS de Lyon, France
  5. University of Lyon, ENS Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, France

Abstract

In multicellular organisms, sexual reproduction requires the separation of the germline from the soma. In flowering plants, the female germline precursor differentiates as a single spore mother cell (SMC) as the ovule primordium forms. Here, we explored how organ growth contributes to SMC differentiation. We generated 92 annotated 3D images at cellular resolution in Arabidopsis. We identified the spatio-temporal pattern of cell division that acts in a domain-specific manner as the primordium forms. Tissue growth models uncovered plausible morphogenetic principles involving a spatially confined growth signal, differential mechanical properties, and cell growth anisotropy. Our analysis revealed that SMC characteristics first arise in more than one cell but SMC fate becomes progressively restricted to a single cell during organ growth. Altered primordium geometry coincided with a delay in the fate restriction process in katanin mutants. Altogether, our study suggests that tissue geometry channels reproductive cell fate in the Arabidopsis ovule primordium.

Data availability

The data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures. Segmented Image data are deposited in Dryad Digital Repository, available at: doi:10.5061/dryad.02v6wwq2c. Cell Statistics from these images are deposited as 'Segmented Dataset ...csv' at https://github.com/barouxlab/OvuleViz

The following data sets were generated

Article and author information

Author details

  1. Elvira Hernandez-Lagana

    DIADE, IRD, CIRAD, Montpellier, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2645-3783
  2. Gabriella Mosca

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4509-498X
  3. Ethel Mendocilla-Sato

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0339-3535
  4. Nuno Pires

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7113-3519
  5. Anja Frey

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    Competing interests
    Anja Frey, Anja Frey is affiliated with Novartis Pharma Schweiz AG. The author has no financial interests to declare.
  6. Alejandro Giraldo-Fonseca

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  7. Caroline Michaud

    DIADE, Institut de Recherche pour le Développement, Montpellier, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0620-2442
  8. Ueli Grossniklaus

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0522-8974
  9. Olivier Hamant

    Laboratoire de Reproduction de développement des plantes, Institut national de la recherche agronomique, Centre national de la recherche scientifique, ENS Lyon, Claude Bernard University Lyon, Université de Lyon, ENS de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6906-6620
  10. Christophe Godin

    Laboratoire de Reproduction de développement des plantes, Institut national de la recherche agronomique, Centre national de la recherche scientifique, ENS Lyon, Claude Bernard University Lyon, University of Lyon, ENS Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1202-8460
  11. Arezki Boudaoud

    Laboratoire de Reproduction de développement des plantes, Institut national de la recherche agronomique, Centre national de la recherche scientifique, ENS Lyon, Claude Bernard University Lyon, Université de Lyon, ENS de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2780-4717
  12. Daniel Grimanelli

    DIADE, IRD, CIRAD, Montpellier, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5424-114X
  13. Daphné Autran

    DIADE, Institut de Recherche pour le Développement, Montpellier, France
    For correspondence
    daphne.autran@ird.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5227-8966
  14. Célia Baroux

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    For correspondence
    cbaroux@botinst.uzh.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6307-2229

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030L_170167)

  • Célia Baroux

Agence Nationale de la Recherche (16-CE93-0002)

  • Daphné Autran

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030B_160336)

  • Ueli Grossniklaus

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (IZCOZ0_182949)

  • Célia Baroux

Kommission für Technologie und Innovation (16997)

  • Célia Baroux

Baugarten Stiftung

  • Célia Baroux

Consejo Nacional de Ciencia y Tecnología (438277)

  • Elvira Hernandez-Lagana

Forschungskredit Universitaet Zuerich (FK-74502-04-01)

  • Gabriella Mosca

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Hernandez-Lagana et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,833
    views
  • 494
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elvira Hernandez-Lagana
  2. Gabriella Mosca
  3. Ethel Mendocilla-Sato
  4. Nuno Pires
  5. Anja Frey
  6. Alejandro Giraldo-Fonseca
  7. Caroline Michaud
  8. Ueli Grossniklaus
  9. Olivier Hamant
  10. Christophe Godin
  11. Arezki Boudaoud
  12. Daniel Grimanelli
  13. Daphné Autran
  14. Célia Baroux
(2021)
Organ geometry channels reproductive cell fate in the Arabidopsis ovule primordium
eLife 10:e66031.
https://doi.org/10.7554/eLife.66031

Share this article

https://doi.org/10.7554/eLife.66031

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Sara Jaber, Eliana Eldawra ... Franck Toledo
    Research Article

    Missense ‘hotspot’ mutations localized in six p53 codons account for 20% of TP53 mutations in human cancers. Hotspot p53 mutants have lost the tumor suppressive functions of the wildtype protein, but whether and how they may gain additional functions promoting tumorigenesis remain controversial. Here, we generated Trp53Y217C, a mouse model of the human hotspot mutant TP53Y220C. DNA damage responses were lost in Trp53Y217C/Y217C (Trp53YC/YC) cells, and Trp53YC/YC fibroblasts exhibited increased chromosome instability compared to Trp53-/- cells. Furthermore, Trp53YC/YC male mice died earlier than Trp53-/- males, with more aggressive thymic lymphomas. This correlated with an increased expression of inflammation-related genes in Trp53YC/YC thymic cells compared to Trp53-/- cells. Surprisingly, we recovered only one Trp53YC/YC female for 22 Trp53YC/YC males at weaning, a skewed distribution explained by a high frequency of Trp53YC/YC female embryos with exencephaly and the death of most Trp53YC/YC female neonates. Strikingly, however, when we treated pregnant females with the anti-inflammatory drug supformin (LCC-12), we observed a fivefold increase in the proportion of viable Trp53YC/YC weaned females in their progeny. Together, these data suggest that the p53Y217C mutation not only abrogates wildtype p53 functions but also promotes inflammation, with oncogenic effects in males and teratogenic effects in females.

    1. Developmental Biology
    Mengjie Li, Aiguo Tian, Jin Jiang
    Research Advance

    Stem cell self-renewal often relies on asymmetric fate determination governed by niche signals and/or cell-intrinsic factors but how these regulatory mechanisms cooperate to promote asymmetric fate decision remains poorly understood. In adult Drosophila midgut, asymmetric Notch (N) signaling inhibits intestinal stem cell (ISC) self-renewal by promoting ISC differentiation into enteroblast (EB). We have previously shown that epithelium-derived Bone Morphogenetic Protein (BMP) promotes ISC self-renewal by antagonizing N pathway activity (Tian and Jiang, 2014). Here, we show that loss of BMP signaling results in ectopic N pathway activity even when the N ligand Delta (Dl) is depleted, and that the N inhibitor Numb acts in parallel with BMP signaling to ensure a robust ISC self-renewal program. Although Numb is asymmetrically segregated in about 80% of dividing ISCs, its activity is largely dispensable for ISC fate determination under normal homeostasis. However, Numb becomes crucial for ISC self-renewal when BMP signaling is compromised. Whereas neither Mad RNA interference nor its hypomorphic mutation led to ISC loss, inactivation of Numb in these backgrounds resulted in stem cell loss due to precocious ISC-to-EB differentiation. Furthermore, we find that numb mutations resulted in stem cell loss during midgut regeneration in response to epithelial damage that causes fluctuation in BMP pathway activity, suggesting that the asymmetrical segregation of Numb into the future ISC may provide a fail-save mechanism for ISC self-renewal by offsetting BMP pathway fluctuation, which is important for ISC maintenance in regenerative guts.