Organ geometry channels reproductive cell fate in the Arabidopsis ovule primordium

  1. Elvira Hernandez-Lagana
  2. Gabriella Mosca
  3. Ethel Mendocilla-Sato
  4. Nuno Pires
  5. Anja Frey
  6. Alejandro Giraldo-Fonseca
  7. Caroline Michaud
  8. Ueli Grossniklaus
  9. Olivier Hamant
  10. Christophe Godin
  11. Arezki Boudaoud
  12. Daniel Grimanelli
  13. Daphné Autran  Is a corresponding author
  14. Célia Baroux  Is a corresponding author
  1. IRD, CIRAD, France
  2. University of Zürich, Switzerland
  3. Institut de Recherche pour le Développement, France
  4. Université de Lyon, ENS de Lyon, France
  5. University of Lyon, ENS Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, France

Abstract

In multicellular organisms, sexual reproduction requires the separation of the germline from the soma. In flowering plants, the female germline precursor differentiates as a single spore mother cell (SMC) as the ovule primordium forms. Here, we explored how organ growth contributes to SMC differentiation. We generated 92 annotated 3D images at cellular resolution in Arabidopsis. We identified the spatio-temporal pattern of cell division that acts in a domain-specific manner as the primordium forms. Tissue growth models uncovered plausible morphogenetic principles involving a spatially confined growth signal, differential mechanical properties, and cell growth anisotropy. Our analysis revealed that SMC characteristics first arise in more than one cell but SMC fate becomes progressively restricted to a single cell during organ growth. Altered primordium geometry coincided with a delay in the fate restriction process in katanin mutants. Altogether, our study suggests that tissue geometry channels reproductive cell fate in the Arabidopsis ovule primordium.

Data availability

The data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for all Figures. Segmented Image data are deposited in Dryad Digital Repository, available at: doi:10.5061/dryad.02v6wwq2c. Cell Statistics from these images are deposited as 'Segmented Dataset ...csv' at https://github.com/barouxlab/OvuleViz

The following data sets were generated

Article and author information

Author details

  1. Elvira Hernandez-Lagana

    DIADE, IRD, CIRAD, Montpellier, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2645-3783
  2. Gabriella Mosca

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4509-498X
  3. Ethel Mendocilla-Sato

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0339-3535
  4. Nuno Pires

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7113-3519
  5. Anja Frey

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    Competing interests
    Anja Frey, Anja Frey is affiliated with Novartis Pharma Schweiz AG. The author has no financial interests to declare.
  6. Alejandro Giraldo-Fonseca

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
  7. Caroline Michaud

    DIADE, Institut de Recherche pour le Développement, Montpellier, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0620-2442
  8. Ueli Grossniklaus

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0522-8974
  9. Olivier Hamant

    Laboratoire de Reproduction de développement des plantes, Institut national de la recherche agronomique, Centre national de la recherche scientifique, ENS Lyon, Claude Bernard University Lyon, Université de Lyon, ENS de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6906-6620
  10. Christophe Godin

    Laboratoire de Reproduction de développement des plantes, Institut national de la recherche agronomique, Centre national de la recherche scientifique, ENS Lyon, Claude Bernard University Lyon, University of Lyon, ENS Lyon, UCB Lyon 1, CNRS, INRAE, INRIA, Lyon, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1202-8460
  11. Arezki Boudaoud

    Laboratoire de Reproduction de développement des plantes, Institut national de la recherche agronomique, Centre national de la recherche scientifique, ENS Lyon, Claude Bernard University Lyon, Université de Lyon, ENS de Lyon, Lyon, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2780-4717
  12. Daniel Grimanelli

    DIADE, IRD, CIRAD, Montpellier, France
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5424-114X
  13. Daphné Autran

    DIADE, Institut de Recherche pour le Développement, Montpellier, France
    For correspondence
    daphne.autran@ird.fr
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5227-8966
  14. Célia Baroux

    Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
    For correspondence
    cbaroux@botinst.uzh.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6307-2229

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030L_170167)

  • Célia Baroux

Agence Nationale de la Recherche (16-CE93-0002)

  • Daphné Autran

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (310030B_160336)

  • Ueli Grossniklaus

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (IZCOZ0_182949)

  • Célia Baroux

Kommission für Technologie und Innovation (16997)

  • Célia Baroux

Baugarten Stiftung

  • Célia Baroux

Consejo Nacional de Ciencia y Tecnología (438277)

  • Elvira Hernandez-Lagana

Forschungskredit Universitaet Zuerich (FK-74502-04-01)

  • Gabriella Mosca

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Hernandez-Lagana et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,646
    views
  • 468
    downloads
  • 27
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Elvira Hernandez-Lagana
  2. Gabriella Mosca
  3. Ethel Mendocilla-Sato
  4. Nuno Pires
  5. Anja Frey
  6. Alejandro Giraldo-Fonseca
  7. Caroline Michaud
  8. Ueli Grossniklaus
  9. Olivier Hamant
  10. Christophe Godin
  11. Arezki Boudaoud
  12. Daniel Grimanelli
  13. Daphné Autran
  14. Célia Baroux
(2021)
Organ geometry channels reproductive cell fate in the Arabidopsis ovule primordium
eLife 10:e66031.
https://doi.org/10.7554/eLife.66031

Share this article

https://doi.org/10.7554/eLife.66031

Further reading

    1. Developmental Biology
    Saira Amir, Olatunbosun Arowolo ... Alexander Suvorov
    Research Article

    Over the past several decades, a trend toward delayed childbirth has led to increases in parental age at the time of conception. Sperm epigenome undergoes age-dependent changes increasing risks of adverse conditions in offspring conceived by fathers of advanced age. The mechanism(s) linking paternal age with epigenetic changes in sperm remain unknown. The sperm epigenome is shaped in a compartment protected by the blood-testes barrier (BTB) known to deteriorate with age. Permeability of the BTB is regulated by the balance of two mTOR complexes in Sertoli cells where mTOR complex 1 (mTORC1) promotes the opening of the BTB and mTOR complex 2 (mTORC2) promotes its integrity. We hypothesized that this balance is also responsible for age-dependent changes in the sperm epigenome. To test this hypothesis, we analyzed reproductive outcomes, including sperm DNA methylation in transgenic mice with Sertoli cell-specific suppression of mTORC1 (Rptor KO) or mTORC2 (Rictor KO). mTORC2 suppression accelerated aging of the sperm DNA methylome and resulted in a reproductive phenotype concordant with older age, including decreased testes weight and sperm counts, and increased percent of morphologically abnormal spermatozoa and mitochondrial DNA copy number. Suppression of mTORC1 resulted in the shift of DNA methylome in sperm opposite to the shift associated with physiological aging – sperm DNA methylome rejuvenation and mild changes in sperm parameters. These results demonstrate for the first time that the balance of mTOR complexes in Sertoli cells regulates the rate of sperm epigenetic aging. Thus, mTOR pathway in Sertoli cells may be used as a novel target of therapeutic interventions to rejuvenate the sperm epigenome in advanced-age fathers.

    1. Cell Biology
    2. Developmental Biology
    Sarah Rubin, Ankit Agrawal ... Elazar Zelzer
    Research Article

    Chondrocyte columns, which are a hallmark of growth plate architecture, play a central role in bone elongation. Columns are formed by clonal expansion following rotation of the division plane, resulting in a stack of cells oriented parallel to the growth direction. In this work, we analyzed hundreds of Confetti multicolor clones in growth plates of mouse embryos using a pipeline comprising 3D imaging and algorithms for morphometric analysis. Surprisingly, analysis of the elevation angles between neighboring pairs of cells revealed that most cells did not display the typical stacking pattern associated with column formation, implying incomplete rotation of the division plane. Morphological analysis revealed that although embryonic clones were elongated, they formed clusters oriented perpendicular to the growth direction. Analysis of growth plates of postnatal mice revealed both complex columns, composed of ordered and disordered cell stacks, and small, disorganized clusters located in the outer edges. Finally, correlation between the temporal dynamics of the ratios between clusters and columns and between bone elongation and expansion suggests that clusters may promote expansion, whereas columns support elongation. Overall, our findings support the idea that modulations of division plane rotation of proliferating chondrocytes determines the formation of either clusters or columns, a multifunctional design that regulates morphogenesis throughout pre- and postnatal bone growth. Broadly, this work provides a new understanding of the cellular mechanisms underlying growth plate activity and bone elongation during development.