An open label trial of anakinra to prevent respiratory failure in COVID-19
Abstract
Background It was studied if early suPAR-guided anakinra treatment can prevent severe respiratory failure (SRF) of COVID-19.
Methods 130 patients with suPAR ≥6 ng/ml were assigned to subcutaneous anakinra 100mg once daily for 10 days. Primary outcome was SRF incidence by day 14 defined as any respiratory ratio below 150 mmHg necessitating mechanical or non-invasive ventilation. Main secondary outcomes were 30-day mortality and inflammatory mediators; 28-day WHO-CPS was explored. Propensity-matched standard-of care comparators were studied.
Results 22.3% with anakinra treatment and 59.2% comparators (hazard ratio, 0.30; 95%CI, 0.20-0.46) progressed into SRF; 30-day mortality was 11.5% and 22.3% respectively (hazard ratio 0.49; 95% CI 0.25-0.97). Anakinra was associated with decrease in circulating interleukin (IL)-6, sCD163 and sIL2-R; IL-10/IL-6 ratio on day 7 was inversely associated with SOFA score; patients were allocated to less severe WHO-CPS strata.
Conclusions Early suPAR-guided anakinra decreased SRF and restored the pro-/anti-inflammatory balance.
Trial Registration: ClinicalTrials.gov, NCT04357366
Data availability
Data of this submission are anticipated to be part of a submission package to the European Medicines Agency for the request of approval of Anakinra for the management of COVID-19 guided by the biomarker suPAR. Once this is finalized, the data will be made publicly available upon request. Requests will require signing contract with the sponsor of the study which is the Hellenic Institute for the Study of Sepsis. The responsible official is Ms Leda Efstratiou who is the DPO responsible for GDPR. Interested researchers should contact Ms Efstratiou at le.efstrat@gmail.com and headed@sepsis.gr to request access to the data.
Article and author information
Author details
Funding
Hellenic Institute for the Study of Sepsis (NA)
- Evangelos J Giamarellos-Bourboulis
Technomar Shipping Inc (NA)
- Evangelos J Giamarellos-Bourboulis
Swedish Orphan Biovitrum AB (NA)
- Evangelos J Giamarellos-Bourboulis
Horizon 2020 (RISKinCOVID)
- Evangelos J Giamarellos-Bourboulis
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Human subjects: Approved in Greece by National Ethics Committee approval 38/20; National Organization for Medicines approval ISO 28/20.Written informed consent was provided by the patient or legal representative before screening.
Copyright
© 2021, Kyriazopoulou et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,748
- views
-
- 561
- downloads
-
- 130
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Immunology and Inflammation
S100A8/A9 is an endogenous alarmin secreted by myeloid cells during many acute and chronic inflammatory disorders. Despite increasing evidence of the proinflammatory effects of extracellular S100A8/A9, little is known about its intracellular function. Here, we show that cytosolic S100A8/A9 is indispensable for neutrophil post-arrest modifications during outside-in signaling under flow conditions in vitro and neutrophil recruitment in vivo, independent of its extracellular functions. Mechanistically, genetic deletion of S100A9 in mice caused dysregulated Ca2+ signatures in activated neutrophils resulting in reduced Ca2+ availability at the formed LFA-1/F-actin clusters with defective β2 integrin outside-in signaling during post-arrest modifications. Consequently, we observed impaired cytoskeletal rearrangement, cell polarization, and spreading, as well as cell protrusion formation in S100a9-/- compared to wildtype (WT) neutrophils, making S100a9-/- cells more susceptible to detach under flow, thereby preventing efficient neutrophil recruitment and extravasation into inflamed tissue.
-
- Computational and Systems Biology
- Immunology and Inflammation
Diverse antibody repertoires spanning multiple lymphoid organs (i.e., bone marrow, spleen, lymph nodes) form the foundation of protective humoral immunity. Changes in their composition across lymphoid organs are a consequence of B-cell selection and migration events leading to a highly dynamic and unique physiological landscape of antibody repertoires upon antigenic challenge (e.g., vaccination). However, to what extent B cells encoding identical or similar antibody sequences (clones) are distributed across multiple lymphoid organs and how this is shaped by the strength of a humoral response remains largely unexplored. Here, we performed an in-depth systems analysis of antibody repertoires across multiple distinct lymphoid organs of immunized mice and discovered that organ-specific antibody repertoire features (i.e., germline V-gene usage and clonal expansion profiles) equilibrated upon a strong humoral response (multiple immunizations and high serum titers). This resulted in a surprisingly high degree of repertoire consolidation, characterized by highly connected and overlapping B-cell clones across multiple lymphoid organs. Finally, we revealed distinct physiological axes indicating clonal migrations and showed that antibody repertoire consolidation directly correlated with antigen specificity. Our study uncovered how a strong humoral response resulted in a more uniform but redundant physiological landscape of antibody repertoires, indicating that increases in antibody serum titers were a result of synergistic contributions from antigen-specific B-cell clones distributed across multiple lymphoid organs. Our findings provide valuable insights for the assessment and design of vaccine strategies.