An open label trial of anakinra to prevent respiratory failure in COVID-19

  1. Evdoxia Kyriazopoulou
  2. Periklis Panagopoulos
  3. Symeon Metallidis
  4. George N Dalekos
  5. Garyphallia Poulakou
  6. Nikolaos Gatselis
  7. Eleni Karakike
  8. Maria Saridaki
  9. Georgia Loli
  10. Aggelos Stefos
  11. Danai Prasianaki
  12. Sarah Georgiadou
  13. Olga Tsachouridou
  14. Vasileios Petrakis
  15. Konstantinos Tsiakos
  16. Maria Kosmidou
  17. Vassiliki Lygoura
  18. Maria Dareioti
  19. Haralampos Milionis
  20. Ilias C Papanikolaou
  21. Karolina Akinosoglou
  22. Dimitra-Melia Myrodia
  23. Areti Gravvani
  24. Aliki Stamou
  25. Theologia Gkavogianni
  26. Konstantina Katrini
  27. Theodoros Marantos
  28. Ioannis P Trontzas
  29. Konstantinos Syrigos
  30. Loukas Chatzis
  31. Stamatios Chatzis
  32. Nikolaos Vechlidis
  33. Christina Avgoustou
  34. Stamatios Chalvatzis
  35. Miltiades Kyprianou
  36. Jos WM van der Meer
  37. Jesper Eugen-Olsen
  38. Mihai G Netea
  39. Evangelos J Giamarellos-Bourboulis  Is a corresponding author
  1. National and Kapodistrian University of Athens, Medical School, Greece
  2. Democritus University of Thrace, Medical School, Greece
  3. Aristotle University of Thessaloniki, Medical School, Greece
  4. National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Greece
  5. Univeristy of Ioannina School of Medicine, Greece
  6. University of Ioannina, School of Health Sciences, Faculty of Medicine, Greece
  7. General Hospital of Kerkyra, Greece
  8. University of Patras, Greece
  9. Radboud University Medical Centre, Netherlands
  10. Copenhagen University Hospital Hvidovre, Denmark
  11. Radboud University Nijmegen Medical Centre, Netherlands

Abstract

Background It was studied if early suPAR-guided anakinra treatment can prevent severe respiratory failure (SRF) of COVID-19.

Methods 130 patients with suPAR ≥6 ng/ml were assigned to subcutaneous anakinra 100mg once daily for 10 days. Primary outcome was SRF incidence by day 14 defined as any respiratory ratio below 150 mmHg necessitating mechanical or non-invasive ventilation. Main secondary outcomes were 30-day mortality and inflammatory mediators; 28-day WHO-CPS was explored. Propensity-matched standard-of care comparators were studied.

Results 22.3% with anakinra treatment and 59.2% comparators (hazard ratio, 0.30; 95%CI, 0.20-0.46) progressed into SRF; 30-day mortality was 11.5% and 22.3% respectively (hazard ratio 0.49; 95% CI 0.25-0.97). Anakinra was associated with decrease in circulating interleukin (IL)-6, sCD163 and sIL2-R; IL-10/IL-6 ratio on day 7 was inversely associated with SOFA score; patients were allocated to less severe WHO-CPS strata.

Conclusions Early suPAR-guided anakinra decreased SRF and restored the pro-/anti-inflammatory balance.

Trial Registration: ClinicalTrials.gov, NCT04357366

Data availability

Data of this submission are anticipated to be part of a submission package to the European Medicines Agency for the request of approval of Anakinra for the management of COVID-19 guided by the biomarker suPAR. Once this is finalized, the data will be made publicly available upon request. Requests will require signing contract with the sponsor of the study which is the Hellenic Institute for the Study of Sepsis. The responsible official is Ms Leda Efstratiou who is the DPO responsible for GDPR. Interested researchers should contact Ms Efstratiou at le.efstrat@gmail.com and headed@sepsis.gr to request access to the data.

Article and author information

Author details

  1. Evdoxia Kyriazopoulou

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9585-517X
  2. Periklis Panagopoulos

    2nd Department of Internal Medicine, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
    Competing interests
    Periklis Panagopoulos, honoraria from GILEAD Sciences, Janssen, and MSD.
  3. Symeon Metallidis

    1st Department of Internal Medicine, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
    Competing interests
    No competing interests declared.
  4. George N Dalekos

    Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
    Competing interests
    George N Dalekos, Advisor/Lecturer for Abbvie, Bristol-Myers Squibb, Gilead, Novartis, Roche, Amgen, MSD, Janssen, Ipsen and Pfizer, has received Grant support from Bristol-Myers Squib, Gilead, Roche, Janssen, Abbvie and Bayer and was or is currently PI in National & International Protocols sponsored by Abbvie, Bristol-Myers Squibb, Novartis, Gilead, Novo Nordisk, Genkyotex, Regulus Therapeutics Inc, Tiziana Life Sciences, Bayer, Astellas, Ipsen, Pfizer and Roche.
  5. Garyphallia Poulakou

    3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    Garyphallia Poulakou, independent educational grants from Pfizer, MSD, Angelini, and Biorad.
  6. Nikolaos Gatselis

    Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
    Competing interests
    No competing interests declared.
  7. Eleni Karakike

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  8. Maria Saridaki

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  9. Georgia Loli

    1st Department of Internal Medicine, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
    Competing interests
    No competing interests declared.
  10. Aggelos Stefos

    Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
    Competing interests
    No competing interests declared.
  11. Danai Prasianaki

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  12. Sarah Georgiadou

    Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
    Competing interests
    No competing interests declared.
  13. Olga Tsachouridou

    1st Department of Internal Medicine, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
    Competing interests
    No competing interests declared.
  14. Vasileios Petrakis

    2nd Department of Internal Medicine, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
    Competing interests
    No competing interests declared.
  15. Konstantinos Tsiakos

    3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  16. Maria Kosmidou

    1st Department of Internal Medicine, Univeristy of Ioannina School of Medicine, Ioannina, Greece
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8618-9435
  17. Vassiliki Lygoura

    Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
    Competing interests
    No competing interests declared.
  18. Maria Dareioti

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  19. Haralampos Milionis

    1st Department of Internal Medicine, University of Ioannina, School of Health Sciences, Faculty of Medicine, Ioannina, Greece
    Competing interests
    Haralampos Milionis, honoraria, consulting fees and non-financial support from healthcare companies, including Amgen, Angelini, Bayer, Mylan, MSD, Pfizer, and Servier.
  20. Ilias C Papanikolaou

    Department of Pulmonary Medicine, General Hospital of Kerkyra, Corfou, Greece
    Competing interests
    No competing interests declared.
  21. Karolina Akinosoglou

    University of Patras, Rion, Greece
    Competing interests
    No competing interests declared.
  22. Dimitra-Melia Myrodia

    3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  23. Areti Gravvani

    3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  24. Aliki Stamou

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  25. Theologia Gkavogianni

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  26. Konstantina Katrini

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  27. Theodoros Marantos

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  28. Ioannis P Trontzas

    3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  29. Konstantinos Syrigos

    3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  30. Loukas Chatzis

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2832-0116
  31. Stamatios Chatzis

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  32. Nikolaos Vechlidis

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  33. Christina Avgoustou

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  34. Stamatios Chalvatzis

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  35. Miltiades Kyprianou

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  36. Jos WM van der Meer

    Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
    Competing interests
    Jos WM van der Meer, Senior editor, eLife.
  37. Jesper Eugen-Olsen

    Clinical Research Centre, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
    Competing interests
    Jesper Eugen-Olsen, cofounder, shareholder and CSO of ViroGates A7S, Denmark and is named inventor on patents on suPAR owned by Copenhagen University Hospital Hvidovre, Denmark.
  38. Mihai G Netea

    Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    Mihai G Netea, supported by an ERC Advanced Grant (#833247) and a Spinoza grant of the Netherlands Organization for Scientific Research. He has also received independent educational grants from TTxD, GSK and ViiV HealthCare.
  39. Evangelos J Giamarellos-Bourboulis

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    For correspondence
    egiamarel@med.uoa.gr
    Competing interests
    Evangelos J Giamarellos-Bourboulis, Reviewing editor, eLifehonoraria from Abbott CH, Angelini Italy, InflaRx GmbH, MSD Greece, XBiotech Inc., and B·R·A·H·M·S GmbH (Thermo Fisher Scientific); independent educational grants from AbbVie Inc, Abbott CH, Astellas Pharma Europe, AxisShield, bioMérieux Inc, Novartis, InflaRx GmbH, and XBiotech Inc; and funding from the FrameWork 7 program HemoSpec (granted to the National and Kapodistrian University of Athens), the Horizon2020 Marie-Curie Project European Sepsis Academy (granted to the National and Kapodistrian University of Athens), and the Horizon 2020 European Grant ImmunoSep (granted to the Hellenic Institute for the Study of Sepsis)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4713-3911

Funding

Hellenic Institute for the Study of Sepsis (NA)

  • Evangelos J Giamarellos-Bourboulis

Technomar Shipping Inc (NA)

  • Evangelos J Giamarellos-Bourboulis

Swedish Orphan Biovitrum AB (NA)

  • Evangelos J Giamarellos-Bourboulis

Horizon 2020 (RISKinCOVID)

  • Evangelos J Giamarellos-Bourboulis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Approved in Greece by National Ethics Committee approval 38/20; National Organization for Medicines approval ISO 28/20.Written informed consent was provided by the patient or legal representative before screening.

Copyright

© 2021, Kyriazopoulou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,748
    views
  • 561
    downloads
  • 130
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Evdoxia Kyriazopoulou
  2. Periklis Panagopoulos
  3. Symeon Metallidis
  4. George N Dalekos
  5. Garyphallia Poulakou
  6. Nikolaos Gatselis
  7. Eleni Karakike
  8. Maria Saridaki
  9. Georgia Loli
  10. Aggelos Stefos
  11. Danai Prasianaki
  12. Sarah Georgiadou
  13. Olga Tsachouridou
  14. Vasileios Petrakis
  15. Konstantinos Tsiakos
  16. Maria Kosmidou
  17. Vassiliki Lygoura
  18. Maria Dareioti
  19. Haralampos Milionis
  20. Ilias C Papanikolaou
  21. Karolina Akinosoglou
  22. Dimitra-Melia Myrodia
  23. Areti Gravvani
  24. Aliki Stamou
  25. Theologia Gkavogianni
  26. Konstantina Katrini
  27. Theodoros Marantos
  28. Ioannis P Trontzas
  29. Konstantinos Syrigos
  30. Loukas Chatzis
  31. Stamatios Chatzis
  32. Nikolaos Vechlidis
  33. Christina Avgoustou
  34. Stamatios Chalvatzis
  35. Miltiades Kyprianou
  36. Jos WM van der Meer
  37. Jesper Eugen-Olsen
  38. Mihai G Netea
  39. Evangelos J Giamarellos-Bourboulis
(2021)
An open label trial of anakinra to prevent respiratory failure in COVID-19
eLife 10:e66125.
https://doi.org/10.7554/eLife.66125

Share this article

https://doi.org/10.7554/eLife.66125

Further reading

    1. Immunology and Inflammation
    Matteo Napoli, Roland Immler ... Monika Pruenster
    Research Article

    S100A8/A9 is an endogenous alarmin secreted by myeloid cells during many acute and chronic inflammatory disorders. Despite increasing evidence of the proinflammatory effects of extracellular S100A8/A9, little is known about its intracellular function. Here, we show that cytosolic S100A8/A9 is indispensable for neutrophil post-arrest modifications during outside-in signaling under flow conditions in vitro and neutrophil recruitment in vivo, independent of its extracellular functions. Mechanistically, genetic deletion of S100A9 in mice caused dysregulated Ca2+ signatures in activated neutrophils resulting in reduced Ca2+ availability at the formed LFA-1/F-actin clusters with defective β2 integrin outside-in signaling during post-arrest modifications. Consequently, we observed impaired cytoskeletal rearrangement, cell polarization, and spreading, as well as cell protrusion formation in S100a9-/- compared to wildtype (WT) neutrophils, making S100a9-/- cells more susceptible to detach under flow, thereby preventing efficient neutrophil recruitment and extravasation into inflamed tissue.

    1. Computational and Systems Biology
    2. Immunology and Inflammation
    Lucia Csepregi, Kenneth Hoehn ... Sai T Reddy
    Research Article

    Diverse antibody repertoires spanning multiple lymphoid organs (i.e., bone marrow, spleen, lymph nodes) form the foundation of protective humoral immunity. Changes in their composition across lymphoid organs are a consequence of B-cell selection and migration events leading to a highly dynamic and unique physiological landscape of antibody repertoires upon antigenic challenge (e.g., vaccination). However, to what extent B cells encoding identical or similar antibody sequences (clones) are distributed across multiple lymphoid organs and how this is shaped by the strength of a humoral response remains largely unexplored. Here, we performed an in-depth systems analysis of antibody repertoires across multiple distinct lymphoid organs of immunized mice and discovered that organ-specific antibody repertoire features (i.e., germline V-gene usage and clonal expansion profiles) equilibrated upon a strong humoral response (multiple immunizations and high serum titers). This resulted in a surprisingly high degree of repertoire consolidation, characterized by highly connected and overlapping B-cell clones across multiple lymphoid organs. Finally, we revealed distinct physiological axes indicating clonal migrations and showed that antibody repertoire consolidation directly correlated with antigen specificity. Our study uncovered how a strong humoral response resulted in a more uniform but redundant physiological landscape of antibody repertoires, indicating that increases in antibody serum titers were a result of synergistic contributions from antigen-specific B-cell clones distributed across multiple lymphoid organs. Our findings provide valuable insights for the assessment and design of vaccine strategies.