An open label trial of anakinra to prevent respiratory failure in COVID-19

  1. Evdoxia Kyriazopoulou
  2. Periklis Panagopoulos
  3. Symeon Metallidis
  4. George N Dalekos
  5. Garyphallia Poulakou
  6. Nikolaos Gatselis
  7. Eleni Karakike
  8. Maria Saridaki
  9. Georgia Loli
  10. Aggelos Stefos
  11. Danai Prasianaki
  12. Sarah Georgiadou
  13. Olga Tsachouridou
  14. Vasileios Petrakis
  15. Konstantinos Tsiakos
  16. Maria Kosmidou
  17. Vassiliki Lygoura
  18. Maria Dareioti
  19. Haralampos Milionis
  20. Ilias C Papanikolaou
  21. Karolina Akinosoglou
  22. Dimitra-Melia Myrodia
  23. Areti Gravvani
  24. Aliki Stamou
  25. Theologia Gkavogianni
  26. Konstantina Katrini
  27. Theodoros Marantos
  28. Ioannis P Trontzas
  29. Konstantinos Syrigos
  30. Loukas Chatzis
  31. Stamatios Chatzis
  32. Nikolaos Vechlidis
  33. Christina Avgoustou
  34. Stamatios Chalvatzis
  35. Miltiades Kyprianou
  36. Jos WM van der Meer
  37. Jesper Eugen-Olsen
  38. Mihai G Netea
  39. Evangelos J Giamarellos-Bourboulis  Is a corresponding author
  1. National and Kapodistrian University of Athens, Medical School, Greece
  2. Democritus University of Thrace, Medical School, Greece
  3. Aristotle University of Thessaloniki, Medical School, Greece
  4. National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Greece
  5. Univeristy of Ioannina School of Medicine, Greece
  6. University of Ioannina, School of Health Sciences, Faculty of Medicine, Greece
  7. General Hospital of Kerkyra, Greece
  8. University of Patras, Greece
  9. Radboud University Medical Centre, Netherlands
  10. Copenhagen University Hospital Hvidovre, Denmark
  11. Radboud University Nijmegen Medical Centre, Netherlands

Abstract

Background It was studied if early suPAR-guided anakinra treatment can prevent severe respiratory failure (SRF) of COVID-19.

Methods 130 patients with suPAR ≥6 ng/ml were assigned to subcutaneous anakinra 100mg once daily for 10 days. Primary outcome was SRF incidence by day 14 defined as any respiratory ratio below 150 mmHg necessitating mechanical or non-invasive ventilation. Main secondary outcomes were 30-day mortality and inflammatory mediators; 28-day WHO-CPS was explored. Propensity-matched standard-of care comparators were studied.

Results 22.3% with anakinra treatment and 59.2% comparators (hazard ratio, 0.30; 95%CI, 0.20-0.46) progressed into SRF; 30-day mortality was 11.5% and 22.3% respectively (hazard ratio 0.49; 95% CI 0.25-0.97). Anakinra was associated with decrease in circulating interleukin (IL)-6, sCD163 and sIL2-R; IL-10/IL-6 ratio on day 7 was inversely associated with SOFA score; patients were allocated to less severe WHO-CPS strata.

Conclusions Early suPAR-guided anakinra decreased SRF and restored the pro-/anti-inflammatory balance.

Trial Registration: ClinicalTrials.gov, NCT04357366

Data availability

Data of this submission are anticipated to be part of a submission package to the European Medicines Agency for the request of approval of Anakinra for the management of COVID-19 guided by the biomarker suPAR. Once this is finalized, the data will be made publicly available upon request. Requests will require signing contract with the sponsor of the study which is the Hellenic Institute for the Study of Sepsis. The responsible official is Ms Leda Efstratiou who is the DPO responsible for GDPR. Interested researchers should contact Ms Efstratiou at le.efstrat@gmail.com and headed@sepsis.gr to request access to the data.

Article and author information

Author details

  1. Evdoxia Kyriazopoulou

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9585-517X
  2. Periklis Panagopoulos

    2nd Department of Internal Medicine, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
    Competing interests
    Periklis Panagopoulos, honoraria from GILEAD Sciences, Janssen, and MSD.
  3. Symeon Metallidis

    1st Department of Internal Medicine, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
    Competing interests
    No competing interests declared.
  4. George N Dalekos

    Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
    Competing interests
    George N Dalekos, Advisor/Lecturer for Abbvie, Bristol-Myers Squibb, Gilead, Novartis, Roche, Amgen, MSD, Janssen, Ipsen and Pfizer, has received Grant support from Bristol-Myers Squib, Gilead, Roche, Janssen, Abbvie and Bayer and was or is currently PI in National & International Protocols sponsored by Abbvie, Bristol-Myers Squibb, Novartis, Gilead, Novo Nordisk, Genkyotex, Regulus Therapeutics Inc, Tiziana Life Sciences, Bayer, Astellas, Ipsen, Pfizer and Roche.
  5. Garyphallia Poulakou

    3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    Garyphallia Poulakou, independent educational grants from Pfizer, MSD, Angelini, and Biorad.
  6. Nikolaos Gatselis

    Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
    Competing interests
    No competing interests declared.
  7. Eleni Karakike

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  8. Maria Saridaki

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  9. Georgia Loli

    1st Department of Internal Medicine, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
    Competing interests
    No competing interests declared.
  10. Aggelos Stefos

    Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
    Competing interests
    No competing interests declared.
  11. Danai Prasianaki

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  12. Sarah Georgiadou

    Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
    Competing interests
    No competing interests declared.
  13. Olga Tsachouridou

    1st Department of Internal Medicine, Aristotle University of Thessaloniki, Medical School, Thessaloniki, Greece
    Competing interests
    No competing interests declared.
  14. Vasileios Petrakis

    2nd Department of Internal Medicine, Democritus University of Thrace, Medical School, Alexandroupolis, Greece
    Competing interests
    No competing interests declared.
  15. Konstantinos Tsiakos

    3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  16. Maria Kosmidou

    1st Department of Internal Medicine, Univeristy of Ioannina School of Medicine, Ioannina, Greece
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8618-9435
  17. Vassiliki Lygoura

    Department of Medicine and Research Laboratory of Internal Medicine, National Expertise Center of Greece in Autoimmune Liver Diseases, General University Hospital of Larissa, Larissa, Greece
    Competing interests
    No competing interests declared.
  18. Maria Dareioti

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  19. Haralampos Milionis

    1st Department of Internal Medicine, University of Ioannina, School of Health Sciences, Faculty of Medicine, Ioannina, Greece
    Competing interests
    Haralampos Milionis, honoraria, consulting fees and non-financial support from healthcare companies, including Amgen, Angelini, Bayer, Mylan, MSD, Pfizer, and Servier.
  20. Ilias C Papanikolaou

    Department of Pulmonary Medicine, General Hospital of Kerkyra, Corfou, Greece
    Competing interests
    No competing interests declared.
  21. Karolina Akinosoglou

    University of Patras, Rion, Greece
    Competing interests
    No competing interests declared.
  22. Dimitra-Melia Myrodia

    3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  23. Areti Gravvani

    3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  24. Aliki Stamou

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  25. Theologia Gkavogianni

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  26. Konstantina Katrini

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  27. Theodoros Marantos

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  28. Ioannis P Trontzas

    3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  29. Konstantinos Syrigos

    3rd Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  30. Loukas Chatzis

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2832-0116
  31. Stamatios Chatzis

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  32. Nikolaos Vechlidis

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  33. Christina Avgoustou

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  34. Stamatios Chalvatzis

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  35. Miltiades Kyprianou

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    Competing interests
    No competing interests declared.
  36. Jos WM van der Meer

    Internal Medicine, Radboud University Medical Centre, Nijmegen, Netherlands
    Competing interests
    Jos WM van der Meer, Senior editor, eLife.
  37. Jesper Eugen-Olsen

    Clinical Research Centre, Copenhagen University Hospital Hvidovre, Copenhagen, Denmark
    Competing interests
    Jesper Eugen-Olsen, cofounder, shareholder and CSO of ViroGates A7S, Denmark and is named inventor on patents on suPAR owned by Copenhagen University Hospital Hvidovre, Denmark.
  38. Mihai G Netea

    Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
    Competing interests
    Mihai G Netea, supported by an ERC Advanced Grant (#833247) and a Spinoza grant of the Netherlands Organization for Scientific Research. He has also received independent educational grants from TTxD, GSK and ViiV HealthCare.
  39. Evangelos J Giamarellos-Bourboulis

    4th Department of Internal Medicine, National and Kapodistrian University of Athens, Medical School, Athens, Greece
    For correspondence
    egiamarel@med.uoa.gr
    Competing interests
    Evangelos J Giamarellos-Bourboulis, Reviewing editor, eLifehonoraria from Abbott CH, Angelini Italy, InflaRx GmbH, MSD Greece, XBiotech Inc., and B·R·A·H·M·S GmbH (Thermo Fisher Scientific); independent educational grants from AbbVie Inc, Abbott CH, Astellas Pharma Europe, AxisShield, bioMérieux Inc, Novartis, InflaRx GmbH, and XBiotech Inc; and funding from the FrameWork 7 program HemoSpec (granted to the National and Kapodistrian University of Athens), the Horizon2020 Marie-Curie Project European Sepsis Academy (granted to the National and Kapodistrian University of Athens), and the Horizon 2020 European Grant ImmunoSep (granted to the Hellenic Institute for the Study of Sepsis)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4713-3911

Funding

Hellenic Institute for the Study of Sepsis (NA)

  • Evangelos J Giamarellos-Bourboulis

Technomar Shipping Inc (NA)

  • Evangelos J Giamarellos-Bourboulis

Swedish Orphan Biovitrum AB (NA)

  • Evangelos J Giamarellos-Bourboulis

Horizon 2020 (RISKinCOVID)

  • Evangelos J Giamarellos-Bourboulis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Approved in Greece by National Ethics Committee approval 38/20; National Organization for Medicines approval ISO 28/20.Written informed consent was provided by the patient or legal representative before screening.

Copyright

© 2021, Kyriazopoulou et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,770
    views
  • 564
    downloads
  • 133
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Evdoxia Kyriazopoulou
  2. Periklis Panagopoulos
  3. Symeon Metallidis
  4. George N Dalekos
  5. Garyphallia Poulakou
  6. Nikolaos Gatselis
  7. Eleni Karakike
  8. Maria Saridaki
  9. Georgia Loli
  10. Aggelos Stefos
  11. Danai Prasianaki
  12. Sarah Georgiadou
  13. Olga Tsachouridou
  14. Vasileios Petrakis
  15. Konstantinos Tsiakos
  16. Maria Kosmidou
  17. Vassiliki Lygoura
  18. Maria Dareioti
  19. Haralampos Milionis
  20. Ilias C Papanikolaou
  21. Karolina Akinosoglou
  22. Dimitra-Melia Myrodia
  23. Areti Gravvani
  24. Aliki Stamou
  25. Theologia Gkavogianni
  26. Konstantina Katrini
  27. Theodoros Marantos
  28. Ioannis P Trontzas
  29. Konstantinos Syrigos
  30. Loukas Chatzis
  31. Stamatios Chatzis
  32. Nikolaos Vechlidis
  33. Christina Avgoustou
  34. Stamatios Chalvatzis
  35. Miltiades Kyprianou
  36. Jos WM van der Meer
  37. Jesper Eugen-Olsen
  38. Mihai G Netea
  39. Evangelos J Giamarellos-Bourboulis
(2021)
An open label trial of anakinra to prevent respiratory failure in COVID-19
eLife 10:e66125.
https://doi.org/10.7554/eLife.66125

Share this article

https://doi.org/10.7554/eLife.66125

Further reading

    1. Immunology and Inflammation
    Ning Song, Hang Gao ... Wenlong Zhang
    Research Article

    Gout is a prevalent form of inflammatory arthritis that occurs due to high levels of uric acid in the blood leading to the formation of urate crystals in and around the joints, particularly affecting the elderly. Recent research has provided evidence of distinct differences in the gut microbiota of patients with gout and hyperuricemia compared to healthy individuals. However, the link between gut microbiota and age-related gout remained underexplored. Our study found that gut microbiota plays a crucial role in determining susceptibility to age-related gout. Specifically, we observed that age-related gut microbiota regulated the activation of the NLRP3 inflammasome pathway and modulated uric acid metabolism. More scrutiny highlighted the positive impact of ‘younger’ microbiota on the gut microbiota structure of old or aged mice, enhancing butanoate metabolism and butyric acid content. Experimentation with butyrate supplementation indicated that butyric acid exerts a dual effect, inhibiting inflammation in acute gout and reducing serum uric acid levels. These insights emphasize the potential of gut microbiome rejuvenation in mitigating senile gout, unraveling the intricate dynamics between microbiota, aging, and gout. It potentially serves as a therapeutic target for senile gout-related conditions.

    1. Immunology and Inflammation
    Weigao Zhang, Hu Liu ... Dan Weng
    Research Article

    As a central hub for metabolism, the liver exhibits strong adaptability to maintain homeostasis in response to food fluctuations throughout evolution. However, the mechanisms governing this resilience remain incompletely understood. In this study, we identified Receptor interacting protein kinase 1 (RIPK1) in hepatocytes as a critical regulator in preserving hepatic homeostasis during metabolic challenges, such as short-term fasting or high-fat dieting. Our results demonstrated that hepatocyte-specific deficiency of RIPK1 sensitized the liver to short-term fasting-induced liver injury and hepatocyte apoptosis in both male and female mice. Despite being a common physiological stressor that typically does not induce liver inflammation, short-term fasting triggered hepatic inflammation and compensatory proliferation in hepatocyte-specific RIPK1-deficient (Ripk1-hepKO) mice. Transcriptomic analysis revealed that short-term fasting oriented the hepatic microenvironment into an inflammatory state in Ripk1-hepKO mice, with up-regulated expression of inflammation and immune cell recruitment-associated genes. Single-cell RNA sequencing further confirmed the altered cellular composition in the liver of Ripk1-hepKO mice during fasting, highlighting the increased recruitment of macrophages to the liver. Mechanically, our results indicated that ER stress was involved in fasting-induced liver injury in Ripk1-hepKO mice. Overall, our findings revealed the role of RIPK1 in maintaining liver homeostasis during metabolic fluctuations and shed light on the intricate interplay between cell death, inflammation, and metabolism.