Host-associated microbe PCR (hamPCR) enables convenient measurement of both microbial load and community composition

  1. Derek S Lundberg  Is a corresponding author
  2. Pratchaya Pramoj Na Ayutthaya
  3. Annett Strauß
  4. Gautam Shirsekar
  5. Wen-Sui Lo
  6. Thomas Lahaye
  7. Detlef Weigel  Is a corresponding author
  1. Max Planck Institute for Developmental Biology, Germany
  2. University of Tübingen, Germany

Abstract

The ratio of microbial population size relative to the amount of host tissue, or 'microbial load', is a fundamental metric of colonization and infection, but it cannot be directly deduced from microbial amplicon data such as 16S rRNA gene counts. Because existing methods to determine load, such as serial dilution plating, quantitative PCR, and whole metagenome sequencing, add substantial cost and/or experimental burden, they are only rarely paired with amplicon sequencing. We introduce host-associated microbe PCR (hamPCR), a robust strategy to both quantify microbial load and describe interkingdom microbial community composition in a single amplicon library. We demonstrate its accuracy across multiple study systems, including nematodes and major crops, and further present a cost-saving technique to reduce host overrepresentation in the library prior to sequencing. Because hamPCR provides an accessible experimental solution to the well-known limitations and statistical challenges of compositional data, it has far-reaching potential in culture-independent microbiology.

Data availability

All data in this manuscript have been deposited in the European Nucleotide Archive (ENA) under the project number PRJEB38287. At https://www.ebi.ac.uk/ena.

The following data sets were generated

Article and author information

Author details

  1. Derek S Lundberg

    Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
    For correspondence
    derek.lundberg@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7970-1595
  2. Pratchaya Pramoj Na Ayutthaya

    Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    No competing interests declared.
  3. Annett Strauß

    ZMBP-General Genetics, University of Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
  4. Gautam Shirsekar

    Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    No competing interests declared.
  5. Wen-Sui Lo

    Department of Evolutionary Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
    Competing interests
    No competing interests declared.
  6. Thomas Lahaye

    ZMBP-General Genetics, University of Tübingen, Tübingen, Germany
    Competing interests
    No competing interests declared.
  7. Detlef Weigel

    Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
    For correspondence
    weigel.elife@gmail.com
    Competing interests
    Detlef Weigel, Senior editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2114-7963

Funding

Deutsche Forschungsgemeinschaft (SPP 2125 DECRyPT)

  • Derek S Lundberg
  • Pratchaya Pramoj Na Ayutthaya
  • Detlef Weigel

Human Frontiers Science Program Long-term Fellowship (LT000565/2015-L)

  • Derek S Lundberg

Max Planck Society

  • Derek S Lundberg
  • Pratchaya Pramoj Na Ayutthaya
  • Gautam Shirsekar
  • Wen-Sui Lo
  • Detlef Weigel

Cluster of Excellence EXC2124 Controlling Microbes to Fight Infection (390838134)

  • Derek S Lundberg
  • Pratchaya Pramoj Na Ayutthaya
  • Gautam Shirsekar
  • Wen-Sui Lo
  • Detlef Weigel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Lundberg et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,603
    views
  • 670
    downloads
  • 30
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Derek S Lundberg
  2. Pratchaya Pramoj Na Ayutthaya
  3. Annett Strauß
  4. Gautam Shirsekar
  5. Wen-Sui Lo
  6. Thomas Lahaye
  7. Detlef Weigel
(2021)
Host-associated microbe PCR (hamPCR) enables convenient measurement of both microbial load and community composition
eLife 10:e66186.
https://doi.org/10.7554/eLife.66186

Share this article

https://doi.org/10.7554/eLife.66186

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Eva Herdering, Tristan Reif-Trauttmansdorff ... Ruth Anne Schmitz
    Research Article

    Glutamine synthetases (GS) are central enzymes essential for the nitrogen metabolism across all domains of life. Consequently, they have been extensively studied for more than half a century. Based on the ATP-dependent ammonium assimilation generating glutamine, GS expression and activity are strictly regulated in all organisms. In the methanogenic archaeon Methanosarcina mazei, it has been shown that the metabolite 2-oxoglutarate (2-OG) directly induces the GS activity. Besides, modulation of the activity by interaction with small proteins (GlnK1 and sP26) has been reported. Here, we show that the strong activation of M. mazei GS (GlnA1) by 2-OG is based on the 2-OG dependent dodecamer assembly of GlnA1 by using mass photometry (MP) and single particle cryo-electron microscopy (cryo-EM) analysis of purified strep-tagged GlnA1. The dodecamer assembly from dimers occurred without any detectable intermediate oligomeric state and was not affected in the presence of GlnK1. The 2.39 Å cryo-EM structure of the dodecameric complex in the presence of 12.5 mM 2-OG demonstrated that 2-OG is binding between two monomers. Thereby, 2-OG appears to induce the dodecameric assembly in a cooperative way. Furthermore, the active site is primed by an allosteric interaction cascade caused by 2-OG-binding towards an adaption of an open active state conformation. In the presence of additional glutamine, strong feedback inhibition of GS activity was observed. Since glutamine dependent disassembly of the dodecamer was excluded by MP, feedback inhibition most likely relies on the binding of glutamine to the catalytic site. Based on our findings, we propose that under nitrogen limitation the induction of M. mazei GS into a catalytically active dodecamer is not affected by GlnK1 and crucially depends on the presence of 2-OG.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.