Integrated evaluation of telomerase activation and telomere maintenance across cancer cell lines

  1. Kevin Hu
  2. Mahmoud Ghandi
  3. Franklin W Huang  Is a corresponding author
  1. University of California, San Francisco, United States
  2. Broad Institute of Harvard and MIT, United States

Abstract

In cancer, telomere maintenance is critical for the development of replicative immortality. Using genome sequences from the Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in Cancer Project, we calculated telomere content across 1,299 cancer cell lines. We find that telomerase reverse transcriptase (TERT) expression correlates with telomere content in lung, central nervous system, and leukemia cell lines. Using CRISPR/Cas9 screening data, we show that lower telomeric content is associated with dependency of CST telomere maintenance genes. Increased dependencies of shelterin members are associated with wild-type TP53 status. Investigating the epigenetic regulation of TERT, we find widespread allele-specific expression in promoter-wildtype contexts. TERT promoter-mutant cell lines exhibit hypomethylation at PRC2-repressed regions, suggesting a cooperative global epigenetic state in the reactivation of telomerase. By incorporating telomere content with genomic features across comprehensively characterized cell lines, we provide further insights into the role of telomere regulation in cancer immortality.

Data availability

Telomere content estimates can be found in the supplementary materials and have been uploaded tothe Cancer Dependency Map portal (https://depmap.org/portal/).

The following previously published data sets were used
    1. DepMap
    2. Broad
    (2020) DepMap 20Q2 Public
    https://doi.org/10.6084/m9.figshare.12280541.v4.

Article and author information

Author details

  1. Kevin Hu

    Hematology/Oncology, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3631-8294
  2. Mahmoud Ghandi

    Broad Institute of Harvard and MIT, Cambridge, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Franklin W Huang

    Hematology/Oncology, University of California, San Francisco, San Francisco, United States
    For correspondence
    franklin.huang@ucsf.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5447-0436

Funding

Prostate Cancer Foundation (Young Investigator Award)

  • Franklin W Huang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. C Daniela Robles-Espinoza, International Laboratory for Human Genome Research, Mexico

Version history

  1. Received: January 2, 2021
  2. Preprint posted: January 24, 2021 (view preprint)
  3. Accepted: August 27, 2021
  4. Accepted Manuscript published: September 6, 2021 (version 1)
  5. Version of Record published: October 21, 2021 (version 2)

Copyright

© 2021, Hu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,400
    Page views
  • 325
    Downloads
  • 4
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Kevin Hu
  2. Mahmoud Ghandi
  3. Franklin W Huang
(2021)
Integrated evaluation of telomerase activation and telomere maintenance across cancer cell lines
eLife 10:e66198.
https://doi.org/10.7554/eLife.66198

Further reading

    1. Cancer Biology
    2. Genetics and Genomics
    Ann-Kathrin Herzfeldt, Marta Puig Gamez ... Lee Kim Swee
    Research Article

    Cytotoxic CD8+ T lymphocytes (CTLs) are key players of adaptive anti-tumor immunity based on their ability to specifically recognize and destroy tumor cells. Many cancer immunotherapies rely on unleashing CTL function. However, tumors can evade killing through strategies which are not yet fully elucidated. To provide deeper insight into tumor evasion mechanisms in an antigen-dependent manner, we established a human co-culture system composed of tumor and primary immune cells. Using this system, we systematically investigated intrinsic regulators of tumor resistance by conducting a complementary CRISPR screen approach. By harnessing CRISPR activation (CRISPRa) and CRISPR knockout (KO) technology in parallel, we investigated gene gain-of-function as well as loss-of-function across genes with annotated function in a colon carcinoma cell line. CRISPRa and CRISPR KO screens uncovered 187 and 704 hits respectively, with 60 gene hits overlapping between both. These data confirmed the role of interferon‑γ (IFN-γ), tumor necrosis factor α (TNF-α) and autophagy pathways and uncovered novel genes implicated in tumor resistance to killing. Notably, we discovered that ILKAP encoding the integrin-linked kinase-associated serine/threonine phosphatase 2C, a gene previously unknown to play a role in antigen specific CTL-mediated killing, mediate tumor resistance independently from regulating antigen presentation, IFN-γ or TNF-α responsiveness. Moreover, our work describes the contrasting role of soluble and membrane-bound ICAM-1 in regulating tumor cell killing. The deficiency of membrane-bound ICAM-1 (mICAM-1) or the overexpression of soluble ICAM-1 (sICAM-1) induced resistance to CTL killing, whereas PD-L1 overexpression had no impact. These results highlight the essential role of ICAM-1 at the immunological synapse between tumor and CTL and the antagonist function of sICAM-1.

    1. Cancer Biology
    2. Cell Biology
    Marianne Mazevet, Anissa Belhadef ... Eric Morel
    Research Article Updated

    Anthracyclines, such as doxorubicin (Dox), are widely used chemotherapeutic agents for the treatment of solid tumors and hematologic malignancies. However, they frequently induce cardiotoxicity leading to dilated cardiomyopathy and heart failure. This study sought to investigate the role of the exchange protein directly activated by cAMP (EPAC) in Dox-induced cardiotoxicity and the potential cardioprotective effects of EPAC inhibition. We show that Dox induces DNA damage and cardiomyocyte cell death with apoptotic features. Dox also led to an increase in both cAMP concentration and EPAC1 activity. The pharmacological inhibition of EPAC1 (with CE3F4) but not EPAC2 alleviated the whole Dox-induced pattern of alterations. When administered in vivo, Dox-treated WT mice developed a dilated cardiomyopathy which was totally prevented in EPAC1 knock-out (KO) mice. Moreover, EPAC1 inhibition potentiated Dox-induced cell death in several human cancer cell lines. Thus, EPAC1 inhibition appears as a potential therapeutic strategy to limit Dox-induced cardiomyopathy without interfering with its antitumoral activity.