Early life experience sets hard limits on motor learning as evidenced from artificial arm use

  1. Roni O Maimon-Mor  Is a corresponding author
  2. Hunter R Schone
  3. David Henderson Slater
  4. Aldo A Faisal
  5. Tamar R Makin
  1. University of Oxford, United Kingdom
  2. University College London, United Kingdom
  3. Nuffield Orthopaedic Centre, United Kingdom
  4. Imperial College London, United Kingdom

Abstract

The study of artificial arms provides a unique opportunity to address long-standing questions on sensorimotor plasticity and development. Learning to use an artificial arm arguably depends on fundamental building blocks of body representation and would therefore be impacted by early-life experience. We tested artificial arm motor-control in two adult populations with upper-limb deficiencies: a congenital group - individuals who were born with a partial arm, and an acquired group - who lost their arm following amputation in adulthood. Brain plasticity research teaches us that the earlier we train to acquire new skills (or use a new technology) the better we benefit from this practice as adults. Instead, we found that although the congenital group started using an artificial arm as toddlers, they produced increased error noise and directional errors when reaching to visual targets, relative to the acquired group who performed similarly to controls. However, the earlier an individual with a congenital limb difference was fitted with an artificial arm, the better their motor control was. Since we found no group differences when reaching without visual feedback, we suggest that the ability to perform efficient visual-based corrective movements is highly dependent on either biological or artificial arm experience at a very young age. Subsequently, opportunities for sensorimotor plasticity become more limited.

Data availability

All data generated and analysed during this study can be found at https://osf.io/quyke/

The following data sets were generated
    1. Maimon Mor RO
    2. Makin TR
    (2021) Artificial-arm (prosthesis) motor control
    Open Science Framework, DOI 10.17605/OSF.IO/QUYKE.

Article and author information

Author details

  1. Roni O Maimon-Mor

    WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
    For correspondence
    roni.maimonmor@ndcn.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5262-9976
  2. Hunter R Schone

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. David Henderson Slater

    Oxford Centre for Enablement, Nuffield Orthopaedic Centre, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Aldo A Faisal

    Department of Bioengineering, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0813-7207
  5. Tamar R Makin

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    Tamar R Makin, Senior editor, eLife.The authors are currently engaged in collaborations with Chris Baker (Senior Editor) and Joern Diedrichsen (BRE). The authors are affiliated with the same institutions as Tim Behrens (Deputy Editor)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5816-8979

Funding

H2020 European Research Council (715022 EmbodiedTech)

  • Tamar R Makin

Wellcome Trust (Senior Research Fellowship (215575/Z/19/Z))

  • Tamar R Makin

Clarendon Fund (Graduate Student fellowship)

  • Roni O Maimon-Mor

University College, Oxford (Graduate Student fellowship)

  • Roni O Maimon-Mor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Participants were recruited to the study between October 2017 and December 2018, based on the guidelines in our ethical approvals (UCL REC: 9937/001; NHS National Research Ethics service: 18/LO/0474), and in accordance with the declaration of Helsinki. All participants gave full written informed consent for their participation, data storage and dissemination.

Reviewing Editor

  1. Amy J Bastian, Kennedy Krieger Institute, United States

Publication history

  1. Received: January 7, 2021
  2. Preprint posted: January 27, 2021 (view preprint)
  3. Accepted: October 1, 2021
  4. Accepted Manuscript published: October 4, 2021 (version 1)
  5. Version of Record published: October 18, 2021 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 941
    Page views
  • 130
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roni O Maimon-Mor
  2. Hunter R Schone
  3. David Henderson Slater
  4. Aldo A Faisal
  5. Tamar R Makin
(2021)
Early life experience sets hard limits on motor learning as evidenced from artificial arm use
eLife 10:e66320.
https://doi.org/10.7554/eLife.66320

Further reading

    1. Neuroscience
    Payel Chatterjee et al.
    Research Article

    During flight maneuvers, insects exhibit compensatory head movements which are essential for stabilizing the visual field on their retina, reducing motion blur, and supporting visual self-motion estimation. In Diptera, such head movements are mediated via visual feedback from their compound eyes that detect retinal slip, as well as rapid mechanosensory feedback from their halteres - the modified hindwings that sense the angular rates of body rotations. Because non-Dipteran insects lack halteres, it is not known if mechanosensory feedback about body rotations plays any role in their head stabilization response. Diverse non-Dipteran insects are known to rely on visual and antennal mechanosensory feedback for flight control. In hawkmoths, for instance, reduction of antennal mechanosensory feedback severely compromises their ability to control flight. Similarly, when the head movements of freely-flying moths are restricted, their flight ability is also severely impaired. The role of compensatory head movements as well as multimodal feedback in insect flight raises an interesting question: in insects that lack halteres, what sensory cues are required for head stabilization? Here, we show that in the nocturnal hawkmoth Daphnis nerii, compensatory head movements are mediated by combined visual and antennal mechanosensory feedback. We subjected tethered moths to open-loop body roll rotations under different lighting conditions, and measured their ability to maintain head angle in the presence or absence of antennal mechanosensory feedback. Our study suggests that head stabilization in moths is mediated primarily by visual feedback during roll movements at lower frequencies, whereas antennal mechanosensory feedback is required when roll occurs at higher frequency. These findings are consistent with the hypothesis that control of head angle results from a multimodal feedback loop that integrates both visual and antennal mechanosensory feedback, albeit at different latencies. At adequate light levels, visual feedback is sufficient for head stabilization primarily at low frequencies of body roll. However, under dark conditions, antennal mechanosensory feedback is essential for the control of head movements at high of body roll.

    1. Developmental Biology
    2. Neuroscience
    Ashtyn T Wiltbank et al.
    Research Article

    Efficient neurotransmission is essential for organism survival and is enhanced by myelination. However, the genes that regulate myelin and myelinating glial cell development have not been fully characterized. Data from our lab and others demonstrates that cd59, which encodes for a small GPI-anchored glycoprotein, is highly expressed in developing zebrafish, rodent, and human oligodendrocytes (OLs) and Schwann cells (SCs), and that patients with CD59 dysfunction develop neurological dysfunction during early childhood. Yet, the function of Cd59 in the developing nervous system is currently undefined. In this study, we demonstrate that cd59 is expressed in a subset of developing SCs. Using cd59 mutant zebrafish, we show that developing SCs proliferate excessively and nerves may have reduced myelin volume, altered myelin ultrastructure, and perturbed node of Ranvier assembly. Finally, we demonstrate that complement activity is elevated in cd59 mutants and that inhibiting inflammation restores SC proliferation, myelin volume, and nodes of Ranvier to wildtype levels. Together, this work identifies Cd59 and developmental inflammation as key players in myelinating glial cell development, highlighting the collaboration between glia and the innate immune system to ensure normal neural development.