Early life experience sets hard limits on motor learning as evidenced from artificial arm use

  1. Roni O Maimon-Mor  Is a corresponding author
  2. Hunter R Schone
  3. David Henderson Slater
  4. Aldo A Faisal
  5. Tamar R Makin
  1. University of Oxford, United Kingdom
  2. University College London, United Kingdom
  3. Nuffield Orthopaedic Centre, United Kingdom
  4. Imperial College London, United Kingdom

Abstract

The study of artificial arms provides a unique opportunity to address long-standing questions on sensorimotor plasticity and development. Learning to use an artificial arm arguably depends on fundamental building blocks of body representation and would therefore be impacted by early-life experience. We tested artificial arm motor-control in two adult populations with upper-limb deficiencies: a congenital group - individuals who were born with a partial arm, and an acquired group - who lost their arm following amputation in adulthood. Brain plasticity research teaches us that the earlier we train to acquire new skills (or use a new technology) the better we benefit from this practice as adults. Instead, we found that although the congenital group started using an artificial arm as toddlers, they produced increased error noise and directional errors when reaching to visual targets, relative to the acquired group who performed similarly to controls. However, the earlier an individual with a congenital limb difference was fitted with an artificial arm, the better their motor control was. Since we found no group differences when reaching without visual feedback, we suggest that the ability to perform efficient visual-based corrective movements is highly dependent on either biological or artificial arm experience at a very young age. Subsequently, opportunities for sensorimotor plasticity become more limited.

Data availability

All data generated and analysed during this study can be found at https://osf.io/quyke/

The following data sets were generated
    1. Maimon Mor RO
    2. Makin TR
    (2021) Artificial-arm (prosthesis) motor control
    Open Science Framework, DOI 10.17605/OSF.IO/QUYKE.

Article and author information

Author details

  1. Roni O Maimon-Mor

    WIN Centre, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, United Kingdom
    For correspondence
    roni.maimonmor@ndcn.ox.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5262-9976
  2. Hunter R Schone

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. David Henderson Slater

    Oxford Centre for Enablement, Nuffield Orthopaedic Centre, Oxford, United Kingdom
    Competing interests
    No competing interests declared.
  4. Aldo A Faisal

    Department of Bioengineering, Imperial College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0813-7207
  5. Tamar R Makin

    Institute of Cognitive Neuroscience, University College London, London, United Kingdom
    Competing interests
    Tamar R Makin, Senior editor, eLife.The authors are currently engaged in collaborations with Chris Baker (Senior Editor) and Joern Diedrichsen (BRE). The authors are affiliated with the same institutions as Tim Behrens (Deputy Editor)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5816-8979

Funding

H2020 European Research Council (715022 EmbodiedTech)

  • Tamar R Makin

Wellcome Trust (Senior Research Fellowship (215575/Z/19/Z))

  • Tamar R Makin

Clarendon Fund (Graduate Student fellowship)

  • Roni O Maimon-Mor

University College, Oxford (Graduate Student fellowship)

  • Roni O Maimon-Mor

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Participants were recruited to the study between October 2017 and December 2018, based on the guidelines in our ethical approvals (UCL REC: 9937/001; NHS National Research Ethics service: 18/LO/0474), and in accordance with the declaration of Helsinki. All participants gave full written informed consent for their participation, data storage and dissemination.

Reviewing Editor

  1. Amy J Bastian, Kennedy Krieger Institute, United States

Publication history

  1. Received: January 7, 2021
  2. Preprint posted: January 27, 2021 (view preprint)
  3. Accepted: October 1, 2021
  4. Accepted Manuscript published: October 4, 2021 (version 1)
  5. Version of Record published: October 18, 2021 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,032
    Page views
  • 137
    Downloads
  • 2
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Roni O Maimon-Mor
  2. Hunter R Schone
  3. David Henderson Slater
  4. Aldo A Faisal
  5. Tamar R Makin
(2021)
Early life experience sets hard limits on motor learning as evidenced from artificial arm use
eLife 10:e66320.
https://doi.org/10.7554/eLife.66320
  1. Further reading

Further reading

    1. Neuroscience
    Maria Cecilia Martinez, Camila Lidia Zold ... Mariano Andrés Belluscio
    Research Article

    The automatic initiation of actions can be highly functional. But occasionally these actions cannot be withheld and are released at inappropriate times, impulsively. Striatal activity has been shown to participate in the timing of action sequence initiation and it has been linked to impulsivity. Using a self-initiated task, we trained adult male rats to withhold a rewarded action sequence until a waiting time interval has elapsed. By analyzing neuronal activity we show that the striatal response preceding the initiation of the learned sequence is strongly modulated by the time subjects wait before eliciting the sequence. Interestingly, the modulation is steeper in adolescent rats, which show a strong prevalence of impulsive responses compared to adults. We hypothesize this anticipatory striatal activity reflects the animals’ subjective reward expectation, based on the elapsed waiting time, while the steeper waiting modulation in adolescence reflects age-related differences in temporal discounting, internal urgency states, or explore–exploit balance.

    1. Computational and Systems Biology
    2. Neuroscience
    Sergio Oscar Verduzco-Flores, Erik De Schutter
    Research Article Updated

    How dynamic interactions between nervous system regions in mammals performs online motor control remains an unsolved problem. In this paper, we show that feedback control is a simple, yet powerful way to understand the neural dynamics of sensorimotor control. We make our case using a minimal model comprising spinal cord, sensory and motor cortex, coupled by long connections that are plastic. It succeeds in learning how to perform reaching movements of a planar arm with 6 muscles in several directions from scratch. The model satisfies biological plausibility constraints, like neural implementation, transmission delays, local synaptic learning and continuous online learning. Using differential Hebbian plasticity the model can go from motor babbling to reaching arbitrary targets in less than 10 min of in silico time. Moreover, independently of the learning mechanism, properly configured feedback control has many emergent properties: neural populations in motor cortex show directional tuning and oscillatory dynamics, the spinal cord creates convergent force fields that add linearly, and movements are ataxic (as in a motor system without a cerebellum).