Abstract

The type V-A Cas12a protein can process its CRISPR array, a feature useful for multiplexed gene editing and regulation. However, CRISPR arrays often exhibit unpredictable performance due to interference between multiple guide RNA (gRNAs). Here, we report that Cas12a array performance is hypersensitive to the GC content of gRNA spacers, as high-GC spacers can impair activity of the downstream gRNA. We analyze naturally occurring CRISPR arrays and observe that natural repeats always contain an AT-rich fragment that separates gRNAs, which we term a CRISPR separator. Inspired by this observation, we design short, AT-rich synthetic separators (synSeparators) that successfully remove the disruptive effects between gRNAs. We further demonstrate enhanced simultaneous activation of seven endogenous genes in human cells using an array containing the synSeparator. These results elucidate a previously underexplored feature of natural CRISPR arrays and demonstrate how nature-inspired engineering solutions can improve multi-gene control in mammalian cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data have been provided for all figures.

Article and author information

Author details

  1. Jens P Magnusson

    Bioengineering Department, Stanford University, Stanford, United States
    Competing interests
    Jens P Magnusson, The authors have filed a US provisional patent application related to this work (application no. 63/139,095)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3928-8959
  2. Antonio Ray Rios

    Bioengineering Department, Stanford University, Stanford, United States
    Competing interests
    Antonio Ray Rios, The authors have filed a US provisional patent application related to this work (application no. 63/139,095)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6717-2267
  3. Lingling Wu

    Bioengineering Department, Stanford University, Stanford, United States
    Competing interests
    Lingling Wu, The authors have filed a US provisional patent application related to this work (application no. 63/139,095)..
  4. Lei S Qi

    Bioengineering Department, Stanford University, Stanford, United States
    For correspondence
    stanley.qi@stanford.edu
    Competing interests
    Lei S Qi, The authors have filed a US provisional patent application related to this work (application no. 63/139,095)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3965-3223

Funding

Li Ka Shing Foundation

  • Lei S Qi

NIH Common Fund 4D Nucleome Program (U01 EB021240)

  • Lei S Qi

Human Frontier Science Program (Long-term Fellowship)

  • Jens P Magnusson

Sweden-America Foundation

  • Jens P Magnusson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Magnusson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,781
    views
  • 680
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jens P Magnusson
  2. Antonio Ray Rios
  3. Lingling Wu
  4. Lei S Qi
(2021)
Enhanced Cas12a multi-gene regulation using a CRISPR array separator
eLife 10:e66406.
https://doi.org/10.7554/eLife.66406

Share this article

https://doi.org/10.7554/eLife.66406

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ting-Wen Chen, Hsiao-Wei Liao ... Chung-Te Chang
    Research Article

    The mRNA 5'-cap structure removal by the decapping enzyme DCP2 is a critical step in gene regulation. While DCP2 is the catalytic subunit in the decapping complex, its activity is strongly enhanced by multiple factors, particularly DCP1, which is the major activator in yeast. However, the precise role of DCP1 in metazoans has yet to be fully elucidated. Moreover, in humans, the specific biological functions of the two DCP1 paralogs, DCP1a and DCP1b, remain largely unknown. To investigate the role of human DCP1, we generated cell lines that were deficient in DCP1a, DCP1b, or both to evaluate the importance of DCP1 in the decapping machinery. Our results highlight the importance of human DCP1 in decapping process and show that the EVH1 domain of DCP1 enhances the mRNA-binding affinity of DCP2. Transcriptome and metabolome analyses outline the distinct functions of DCP1a and DCP1b in human cells, regulating specific endogenous mRNA targets and biological processes. Overall, our findings provide insights into the molecular mechanism of human DCP1 in mRNA decapping and shed light on the distinct functions of its paralogs.

    1. Chromosomes and Gene Expression
    2. Computational and Systems Biology
    Miguel Martinez-Ara, Federico Comoglio, Bas van Steensel
    Research Article

    Genes are often regulated by multiple enhancers. It is poorly understood how the individual enhancer activities are combined to control promoter activity. Anecdotal evidence has shown that enhancers can combine sub-additively, additively, synergistically, or redundantly. However, it is not clear which of these modes are more frequent in mammalian genomes. Here, we systematically tested how pairs of enhancers activate promoters using a three-way combinatorial reporter assay in mouse embryonic stem cells. By assaying about 69,000 enhancer-enhancer-promoter combinations we found that enhancer pairs generally combine near-additively. This behaviour was conserved across seven developmental promoters tested. Surprisingly, these promoters scale the enhancer signals in a non-linear manner that depends on promoter strength. A housekeeping promoter showed an overall different response to enhancer pairs, and a smaller dynamic range. Thus, our data indicate that enhancers mostly act additively, but promoters transform their collective effect non-linearly.