Abstract

The type V-A Cas12a protein can process its CRISPR array, a feature useful for multiplexed gene editing and regulation. However, CRISPR arrays often exhibit unpredictable performance due to interference between multiple guide RNA (gRNAs). Here, we report that Cas12a array performance is hypersensitive to the GC content of gRNA spacers, as high-GC spacers can impair activity of the downstream gRNA. We analyze naturally occurring CRISPR arrays and observe that natural repeats always contain an AT-rich fragment that separates gRNAs, which we term a CRISPR separator. Inspired by this observation, we design short, AT-rich synthetic separators (synSeparators) that successfully remove the disruptive effects between gRNAs. We further demonstrate enhanced simultaneous activation of seven endogenous genes in human cells using an array containing the synSeparator. These results elucidate a previously underexplored feature of natural CRISPR arrays and demonstrate how nature-inspired engineering solutions can improve multi-gene control in mammalian cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data have been provided for all figures.

Article and author information

Author details

  1. Jens P Magnusson

    Bioengineering Department, Stanford University, Stanford, United States
    Competing interests
    Jens P Magnusson, The authors have filed a US provisional patent application related to this work (application no. 63/139,095)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3928-8959
  2. Antonio Ray Rios

    Bioengineering Department, Stanford University, Stanford, United States
    Competing interests
    Antonio Ray Rios, The authors have filed a US provisional patent application related to this work (application no. 63/139,095)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6717-2267
  3. Lingling Wu

    Bioengineering Department, Stanford University, Stanford, United States
    Competing interests
    Lingling Wu, The authors have filed a US provisional patent application related to this work (application no. 63/139,095)..
  4. Lei S Qi

    Bioengineering Department, Stanford University, Stanford, United States
    For correspondence
    stanley.qi@stanford.edu
    Competing interests
    Lei S Qi, The authors have filed a US provisional patent application related to this work (application no. 63/139,095)..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3965-3223

Funding

Li Ka Shing Foundation

  • Lei S Qi

NIH Common Fund 4D Nucleome Program (U01 EB021240)

  • Lei S Qi

Human Frontier Science Program (Long-term Fellowship)

  • Jens P Magnusson

Sweden-America Foundation

  • Jens P Magnusson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Joseph T Wade, Wadsworth Center, New York State Department of Health, United States

Version history

  1. Received: January 9, 2021
  2. Preprint posted: January 27, 2021 (view preprint)
  3. Accepted: September 8, 2021
  4. Accepted Manuscript published: September 9, 2021 (version 1)
  5. Accepted Manuscript updated: September 13, 2021 (version 2)
  6. Version of Record published: September 28, 2021 (version 3)

Copyright

© 2021, Magnusson et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,234
    Page views
  • 626
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jens P Magnusson
  2. Antonio Ray Rios
  3. Lingling Wu
  4. Lei S Qi
(2021)
Enhanced Cas12a multi-gene regulation using a CRISPR array separator
eLife 10:e66406.
https://doi.org/10.7554/eLife.66406

Share this article

https://doi.org/10.7554/eLife.66406

Further reading

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.

    1. Chromosomes and Gene Expression
    Fujun Zhou, Julie M Bocetti ... Jon R Lorsch
    Research Article

    We have developed a deep sequencing-based approach, Rec-Seq, that allows simultaneous monitoring of ribosomal 48S preinitiation complex (PIC) formation on every mRNA in the translatome in an in vitro reconstituted system. Rec-Seq isolates key early steps in translation initiation in the absence of all other cellular components and processes. Using this approach, we show that the DEAD-box ATPase Ded1 promotes 48S PIC formation on the start codons of >1000 native mRNAs, most of which have long, structured 5′-untranslated regions (5′UTRs). Remarkably, initiation measured in Rec-Seq was enhanced by Ded1 for most mRNAs previously shown to be highly Ded1-dependent by ribosome profiling of ded1 mutants in vivo, demonstrating that the core translation functions of the factor are recapitulated in the purified system. Our data do not support a model in which Ded1acts by reducing initiation at alternative start codons in 5′UTRs and instead indicate it functions by directly promoting mRNA recruitment to the 43S PIC and scanning to locate the main start codon. We also provide evidence that eIF4A, another essential DEAD-box initiation factor, is required for efficient PIC assembly on almost all mRNAs, regardless of their structural complexity, in contrast to the preferential stimulation by Ded1 of initiation on mRNAs with long, structured 5′UTRs.