Allosteric communication in class A β-lactamases occurs via cooperative coupling of loop dynamics

  1. Ioannis Galdadas  Is a corresponding author
  2. Shen Qu
  3. Ana Sofia F Oliveira
  4. Edgar Olehnovics
  5. Andrew R Mack
  6. Maria F Mojica
  7. Pratul K Agarwal
  8. Catherine L Tooke
  9. Francesco Luigi Gervasio
  10. James Spencer
  11. Robert A Bonomo
  12. Adrian J Mulholland  Is a corresponding author
  13. Shozeb Haider  Is a corresponding author
  1. University College London, United Kingdom
  2. University of Bristol, United Kingdom
  3. Case Western Reserve University, United States
  4. Oklahoma State University, United States

Abstract

Understanding allostery in enzymes and tools to identify it, offer promising alternative strategies to inhibitor development. Through a combination of equilibrium and nonequilibrium molecular dynamics simulations, we identify allosteric effects and communication pathways in two prototypical class A β-lactamases, TEM-1 and KPC-2, which are important determinants of antibiotic resistance. The nonequilibrium simulations reveal pathways of communication operating over distances of 30 Å or more. Propagation of the signal occurs through cooperative coupling of loop dynamics. Notably, 50% or more of clinically relevant amino acid substitutions map onto the identified signal transduction pathways. This suggests that clinically important variation may affect, or be driven by, differences in allosteric behavior, providing a mechanism by which amino acid substitutions may affect the relationship between spectrum of activity, catalytic turnover and potential allosteric behavior in this clinically important enzyme family. Simulations of the type presented here will help in identifying and analyzing such differences.

Data availability

All analysis scripts have been uploaded on figshare with doi 10.6084/m9.figshare.13583384

Article and author information

Author details

  1. Ioannis Galdadas

    Chemistry ; Structural and Molecular Biology, University College London, London, United Kingdom
    For correspondence
    i.galdadas.17@ucl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2136-9723
  2. Shen Qu

    School of Pharmacy, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ana Sofia F Oliveira

    School of Chemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    No competing interests declared.
  4. Edgar Olehnovics

    School of Pharmacy, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Andrew R Mack

    Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0131-7996
  6. Maria F Mojica

    Department of Infectious Diseases, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  7. Pratul K Agarwal

    Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, United States
    Competing interests
    Pratul K Agarwal, Pratul K Agarwal is the founder and owner of Arium BioLabs LLC..
  8. Catherine L Tooke

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    No competing interests declared.
  9. Francesco Luigi Gervasio

    Chemistry ; Structural and Molecular Biology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4831-5039
  10. James Spencer

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    No competing interests declared.
  11. Robert A Bonomo

    Department of Infectious Diseases, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  12. Adrian J Mulholland

    School of Chemistry, University of Bristol, Bristol, United Kingdom
    For correspondence
    adrian.mulholland@bristol.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1015-4567
  13. Shozeb Haider

    School of Pharmacy, University College London, London, United Kingdom
    For correspondence
    shozeb.haider@ucl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2650-2925

Funding

AstraZeneca (Case Studentship)

  • Ioannis Galdadas

National Institute of Allergy and Infectious Diseases (R01AI072219)

  • Robert A Bonomo

National Institute of General Medical Sciences (GM105978)

  • Pratul K Agarwal

National Institutes of Health (RO1AI063517)

  • Robert A Bonomo
  • Shozeb Haider

Engineering and Physical Sciences Research Council (EP/M022609/1)

  • Ana Sofia F Oliveira
  • Adrian J Mulholland

Engineering and Physical Sciences Research Council (EP/N024117/1)

  • Ana Sofia F Oliveira
  • Adrian J Mulholland

Biotechnology and Biological Sciences Research Council (BB/L01386X/1)

  • Ana Sofia F Oliveira
  • Adrian J Mulholland

Medical Research Council (MR/T016035/1)

  • Catherine L Tooke
  • James Spencer
  • Adrian J Mulholland

National Institute of Allergy and Infectious Diseases (R01AI100560)

  • Robert A Bonomo

National Institute of Allergy and Infectious Diseases (R01AI063517)

  • Robert A Bonomo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Galdadas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,002
    views
  • 513
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ioannis Galdadas
  2. Shen Qu
  3. Ana Sofia F Oliveira
  4. Edgar Olehnovics
  5. Andrew R Mack
  6. Maria F Mojica
  7. Pratul K Agarwal
  8. Catherine L Tooke
  9. Francesco Luigi Gervasio
  10. James Spencer
  11. Robert A Bonomo
  12. Adrian J Mulholland
  13. Shozeb Haider
(2021)
Allosteric communication in class A β-lactamases occurs via cooperative coupling of loop dynamics
eLife 10:e66567.
https://doi.org/10.7554/eLife.66567

Share this article

https://doi.org/10.7554/eLife.66567

Further reading

    1. Medicine
    2. Neuroscience
    Emily M Adamic, Adam R Teed ... Sahib Khalsa
    Research Article

    Interactions between top-down attention and bottom-up visceral inputs are assumed to produce conscious perceptions of interoceptive states, and while each process has been independently associated with aberrant interoceptive symptomatology in psychiatric disorders, the neural substrates of this interface are unknown. We conducted a preregistered functional neuroimaging study of 46 individuals with anxiety, depression, and/or eating disorders (ADE) and 46 propensity-matched healthy comparisons (HC), comparing their neural activity across two interoceptive tasks differentially recruiting top-down or bottom-up processing within the same scan session. During an interoceptive attention task, top-down attention was voluntarily directed towards cardiorespiratory or visual signals. In contrast, during an interoceptive perturbation task, intravenous infusions of isoproterenol (a peripherally-acting beta-adrenergic receptor agonist) were administered in a double-blinded and placebo-controlled fashion to drive bottom-up cardiorespiratory sensations. Across both tasks, neural activation converged upon the insular cortex, localizing within the granular and ventral dysgranular subregions bilaterally. However, contrasting hemispheric differences emerged, with the ADE group exhibiting (relative to HCs) an asymmetric pattern of overlap in the left insula, with increased or decreased proportions of co-activated voxels within the left or right dysgranular insula, respectively. The ADE group also showed less agranular anterior insula activation during periods of bodily uncertainty (i.e. when anticipating possible isoproterenol-induced changes that never arrived). Finally, post-task changes in insula functional connectivity were associated with anxiety and depression severity. These findings confirm the dysgranular mid-insula as a key cortical interface where attention and prediction meet real-time bodily inputs, especially during heightened awareness of interoceptive states. Furthermore, the dysgranular mid-insula may indeed be a ‘locus of disruption’ for psychiatric disorders.

    1. Medicine
    Yanling Huang, Haocong Mo ... Geyang Xu
    Research Article

    Glucagon-like peptide 1 (GLP-1) is a gut-derived hormone secreted by intestinal L cells and vital for postprandial glycemic control. As open-type enteroendocrine cells, whether L cells can sense mechanical stimuli caused by chyme and thus regulate GLP-1 synthesis and secretion is unexplored. Molecular biology techniques revealed the expression of Piezo1 in intestinal L cells. Its level varied in different energy status and correlates with blood glucose and GLP-1 levels. Mice with L cell-specific loss of Piezo1 (Piezo1 IntL-CKO) exhibited impaired glucose tolerance, increased body weight, reduced GLP-1 production and decreased CaMKKβ/CaMKIV-mTORC1 signaling pathway under normal chow diet or high-fat diet. Activation of the intestinal Piezo1 by its agonist Yoda1 or intestinal bead implantation increased the synthesis and secretion of GLP-1, thus alleviated glucose intolerance in diet-induced-diabetic mice. Overexpression of Piezo1, Yoda1 treatment or stretching stimulated GLP-1 production and CaMKKβ/CaMKIV-mTORC1 signaling pathway, which could be abolished by knockdown or blockage of Piezo1 in primary cultured mouse L cells and STC-1 cells. These experimental results suggest a previously unknown regulatory mechanism for GLP-1 production in L cells, which could offer new insights into diabetes treatments.