1. Medicine
  2. Structural Biology and Molecular Biophysics
Download icon

Allosteric communication in class A β-lactamases occurs via cooperative coupling of loop dynamics

  1. Ioannis Galdadas  Is a corresponding author
  2. Shen Qu
  3. Ana Sofia F Oliveira
  4. Edgar Olehnovics
  5. Andrew R Mack
  6. Maria F Mojica
  7. Pratul K Agarwal
  8. Catherine L Tooke
  9. Francesco Luigi Gervasio
  10. James Spencer
  11. Robert A Bonomo
  12. Adrian J Mulholland  Is a corresponding author
  13. Shozeb Haider  Is a corresponding author
  1. University College London, United Kingdom
  2. University of Bristol, United Kingdom
  3. Case Western Reserve University, United States
  4. Oklahoma State University, United States
Research Article
  • Cited 0
  • Views 564
  • Annotations
Cite this article as: eLife 2021;10:e66567 doi: 10.7554/eLife.66567

Abstract

Understanding allostery in enzymes and tools to identify it, offer promising alternative strategies to inhibitor development. Through a combination of equilibrium and nonequilibrium molecular dynamics simulations, we identify allosteric effects and communication pathways in two prototypical class A β-lactamases, TEM-1 and KPC-2, which are important determinants of antibiotic resistance. The nonequilibrium simulations reveal pathways of communication operating over distances of 30 Å or more. Propagation of the signal occurs through cooperative coupling of loop dynamics. Notably, 50% or more of clinically relevant amino acid substitutions map onto the identified signal transduction pathways. This suggests that clinically important variation may affect, or be driven by, differences in allosteric behavior, providing a mechanism by which amino acid substitutions may affect the relationship between spectrum of activity, catalytic turnover and potential allosteric behavior in this clinically important enzyme family. Simulations of the type presented here will help in identifying and analyzing such differences.

Article and author information

Author details

  1. Ioannis Galdadas

    Chemistry ; Structural and Molecular Biology, University College London, London, United Kingdom
    For correspondence
    igaldadas@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2136-9723
  2. Shen Qu

    School of Pharmacy, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ana Sofia F Oliveira

    School of Chemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    No competing interests declared.
  4. Edgar Olehnovics

    School of Pharmacy, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Andrew R Mack

    Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0131-7996
  6. Maria F Mojica

    Department of Infectious Diseases, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  7. Pratul K Agarwal

    Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, United States
    Competing interests
    Pratul K Agarwal, Pratul K Agarwal is the founder and owner of Arium BioLabs LLC..
  8. Catherine L Tooke

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    No competing interests declared.
  9. Francesco Luigi Gervasio

    Chemistry ; Structural and Molecular Biology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4831-5039
  10. James Spencer

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    No competing interests declared.
  11. Robert A Bonomo

    Department of Infectious Diseases, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  12. Adrian J Mulholland

    School of Chemistry, University of Bristol, Bristol, United Kingdom
    For correspondence
    adrian.mulholland@bristol.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1015-4567
  13. Shozeb Haider

    School of Pharmacy, University College London, London, United Kingdom
    For correspondence
    shozeb.haider@ucl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2650-2925

Funding

AstraZeneca (Case Studentship)

  • Ioannis Galdadas

National Institute of Allergy and Infectious Diseases (R01AI072219)

  • Robert A Bonomo

National Institute of General Medical Sciences (GM105978)

  • Pratul K Agarwal

National Institutes of Health (RO1AI063517)

  • Robert A Bonomo
  • Shozeb Haider

Engineering and Physical Sciences Research Council (EP/M022609/1)

  • Ana Sofia F Oliveira
  • Adrian J Mulholland

Engineering and Physical Sciences Research Council (EP/N024117/1)

  • Ana Sofia F Oliveira
  • Adrian J Mulholland

Biotechnology and Biological Sciences Research Council (BB/L01386X/1)

  • Ana Sofia F Oliveira
  • Adrian J Mulholland

Medical Research Council (MR/T016035/1)

  • Catherine L Tooke
  • James Spencer
  • Adrian J Mulholland

National Institute of Allergy and Infectious Diseases (R01AI100560)

  • Robert A Bonomo

National Institute of Allergy and Infectious Diseases (R01AI063517)

  • Robert A Bonomo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Yogesh K Gupta, University of Texas Health Science Center at San Antonio, United States

Publication history

  1. Received: January 14, 2021
  2. Accepted: March 19, 2021
  3. Accepted Manuscript published: March 23, 2021 (version 1)
  4. Accepted Manuscript updated: March 24, 2021 (version 2)

Copyright

© 2021, Galdadas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 564
    Page views
  • 109
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Medicine
    2. Neuroscience
    Yunlu Xue et al.
    Research Article

    Retinitis pigmentosa (RP) is an inherited retinal disease, affecting >20 million people worldwide. Loss of daylight vision typically occurs due to the dysfunction/loss of cone photoreceptors, the cell type that initiates our color and high acuity vision. Currently, there is no effective treatment for RP, other than gene therapy for a limited number of specific disease genes. To develop a disease gene-agnostic therapy, we screened 20 genes for their ability to prolong cone photoreceptor survival in vivo. Here, we report an adeno-associated virus (AAV) vector expressing Txnip, which prolongs the survival of cone photoreceptors and improves visual acuity in RP mouse models. A Txnip allele, C247S, which blocks the association of Txnip with thioredoxin, provides an even greater benefit. Additionally, the rescue effect of Txnip depends on lactate dehydrogenase b (Ldhb), and correlates with the presence of healthier mitochondria, suggesting that Txnip saves RP cones by enhancing their lactate catabolism.

    1. Chromosomes and Gene Expression
    2. Medicine
    Martina Rudnicki, Tara L Haas
    Insight

    Risk factors for cardiovascular diseases trigger molecular changes that harm the endothelial cells in the heart, but exercise can suppress these effects.