Allosteric communication in class A β-lactamases occurs via cooperative coupling of loop dynamics

  1. Ioannis Galdadas  Is a corresponding author
  2. Shen Qu
  3. Ana Sofia F Oliveira
  4. Edgar Olehnovics
  5. Andrew R Mack
  6. Maria F Mojica
  7. Pratul K Agarwal
  8. Catherine L Tooke
  9. Francesco Luigi Gervasio
  10. James Spencer
  11. Robert A Bonomo
  12. Adrian J Mulholland  Is a corresponding author
  13. Shozeb Haider  Is a corresponding author
  1. University College London, United Kingdom
  2. University of Bristol, United Kingdom
  3. Case Western Reserve University, United States
  4. Oklahoma State University, United States

Abstract

Understanding allostery in enzymes and tools to identify it, offer promising alternative strategies to inhibitor development. Through a combination of equilibrium and nonequilibrium molecular dynamics simulations, we identify allosteric effects and communication pathways in two prototypical class A β-lactamases, TEM-1 and KPC-2, which are important determinants of antibiotic resistance. The nonequilibrium simulations reveal pathways of communication operating over distances of 30 Å or more. Propagation of the signal occurs through cooperative coupling of loop dynamics. Notably, 50% or more of clinically relevant amino acid substitutions map onto the identified signal transduction pathways. This suggests that clinically important variation may affect, or be driven by, differences in allosteric behavior, providing a mechanism by which amino acid substitutions may affect the relationship between spectrum of activity, catalytic turnover and potential allosteric behavior in this clinically important enzyme family. Simulations of the type presented here will help in identifying and analyzing such differences.

Data availability

All analysis scripts have been uploaded on figshare with doi 10.6084/m9.figshare.13583384

Article and author information

Author details

  1. Ioannis Galdadas

    Chemistry ; Structural and Molecular Biology, University College London, London, United Kingdom
    For correspondence
    igaldadas@gmail.com
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2136-9723
  2. Shen Qu

    School of Pharmacy, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  3. Ana Sofia F Oliveira

    School of Chemistry, University of Bristol, Bristol, United Kingdom
    Competing interests
    No competing interests declared.
  4. Edgar Olehnovics

    School of Pharmacy, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
  5. Andrew R Mack

    Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0131-7996
  6. Maria F Mojica

    Department of Infectious Diseases, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  7. Pratul K Agarwal

    Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, United States
    Competing interests
    Pratul K Agarwal, Pratul K Agarwal is the founder and owner of Arium BioLabs LLC..
  8. Catherine L Tooke

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    No competing interests declared.
  9. Francesco Luigi Gervasio

    Chemistry ; Structural and Molecular Biology, University College London, London, United Kingdom
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4831-5039
  10. James Spencer

    School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
    Competing interests
    No competing interests declared.
  11. Robert A Bonomo

    Department of Infectious Diseases, Case Western Reserve University, Cleveland, United States
    Competing interests
    No competing interests declared.
  12. Adrian J Mulholland

    School of Chemistry, University of Bristol, Bristol, United Kingdom
    For correspondence
    adrian.mulholland@bristol.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1015-4567
  13. Shozeb Haider

    School of Pharmacy, University College London, London, United Kingdom
    For correspondence
    shozeb.haider@ucl.ac.uk
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2650-2925

Funding

AstraZeneca (Case Studentship)

  • Ioannis Galdadas

National Institute of Allergy and Infectious Diseases (R01AI072219)

  • Robert A Bonomo

National Institute of General Medical Sciences (GM105978)

  • Pratul K Agarwal

National Institutes of Health (RO1AI063517)

  • Robert A Bonomo
  • Shozeb Haider

Engineering and Physical Sciences Research Council (EP/M022609/1)

  • Ana Sofia F Oliveira
  • Adrian J Mulholland

Engineering and Physical Sciences Research Council (EP/N024117/1)

  • Ana Sofia F Oliveira
  • Adrian J Mulholland

Biotechnology and Biological Sciences Research Council (BB/L01386X/1)

  • Ana Sofia F Oliveira
  • Adrian J Mulholland

Medical Research Council (MR/T016035/1)

  • Catherine L Tooke
  • James Spencer
  • Adrian J Mulholland

National Institute of Allergy and Infectious Diseases (R01AI100560)

  • Robert A Bonomo

National Institute of Allergy and Infectious Diseases (R01AI063517)

  • Robert A Bonomo

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Galdadas et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,033
    views
  • 517
    downloads
  • 59
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ioannis Galdadas
  2. Shen Qu
  3. Ana Sofia F Oliveira
  4. Edgar Olehnovics
  5. Andrew R Mack
  6. Maria F Mojica
  7. Pratul K Agarwal
  8. Catherine L Tooke
  9. Francesco Luigi Gervasio
  10. James Spencer
  11. Robert A Bonomo
  12. Adrian J Mulholland
  13. Shozeb Haider
(2021)
Allosteric communication in class A β-lactamases occurs via cooperative coupling of loop dynamics
eLife 10:e66567.
https://doi.org/10.7554/eLife.66567

Share this article

https://doi.org/10.7554/eLife.66567

Further reading

    1. Medicine
    2. Neuroscience
    Chi Zhang, Qian Huang ... Yun Guan
    Research Article

    Pain after surgery causes significant suffering. Opioid analgesics cause severe side effects and accidental death. Therefore, there is an urgent need to develop non-opioid therapies for managing post-surgical pain. Local application of Clarix Flo (FLO), a human amniotic membrane (AM) product, attenuated established post-surgical pain hypersensitivity without exhibiting known side effects of opioid use in mice. This effect was achieved through direct inhibition of nociceptive dorsal root ganglion (DRG) neurons via CD44-dependent pathways. We further purified the major matrix component, the heavy chain-hyaluronic acid/pentraxin 3 (HC-HA/PTX3) from human AM that has greater purity and water solubility than FLO. HC-HA/PTX3 replicated FLO-induced neuronal and pain inhibition. Mechanistically, HC-HA/PTX3-induced cytoskeleton rearrangements to inhibit sodium current and high-voltage activated calcium current on nociceptive DRG neurons, suggesting it is a key bioactive component mediating pain relief. Collectively, our findings highlight the potential of naturally derived biologics from human birth tissues as an effective non-opioid treatment for post-surgical pain. Moreover, we unravel the underlying neuronal mechanisms of pain inhibition induced by FLO and HC-HA/PTX3.

    1. Medicine
    Sami Fawaz, Severine Marti ... Thierry Couffinhal
    Research Article

    Background:

    Clonal hematopoiesis of indeterminate potential (CHIP) was initially linked to a twofold increase in atherothrombotic events. However, recent investigations have revealed a more nuanced picture, suggesting that CHIP may confer only a modest rise in myocardial infarction (MI) risk. This observed lower risk might be influenced by yet unidentified factors that modulate the pathological effects of CHIP. Mosaic loss of the Y chromosome (mLOY), a common marker of clonal hematopoiesis in men, has emerged as a potential candidate for modulating cardiovascular risk associated with CHIP. In this study, we aimed to ascertain the risk linked to each somatic mutation or mLOY and explore whether mLOY could exert an influence on the cardiovascular risk associated with CHIP.

    Methods:

    We conducted an examination for the presence of CHIP and mLOY using targeted high-throughput sequencing and digital PCR in a cohort of 446 individuals. Among them, 149 patients from the CHAth study had experienced a first MI at the time of inclusion (MI(+) subjects), while 297 individuals from the Three-City cohort had no history of cardiovascular events (CVE) at the time of inclusion (MI(-) subjects). All subjects underwent thorough cardiovascular phenotyping, including a direct assessment of atherosclerotic burden. Our investigation aimed to determine whether mLOY could modulate inflammation, atherosclerosis burden, and atherothrombotic risk associated with CHIP.

    Results:

    CHIP and mLOY were detected with a substantial prevalence (45.1% and 37.7%, respectively), and their occurrence was similar between MI(+) and MI(-) subjects. Notably, nearly 40% of CHIP(+) male subjects also exhibited mLOY. Interestingly, neither CHIP nor mLOY independently resulted in significant increases in plasma hs-CRP levels, atherosclerotic burden, or MI incidence. Moreover, mLOY did not amplify or diminish inflammation, atherosclerosis, or MI incidence among CHIP(+) male subjects. Conversely, in MI(-) male subjects, CHIP heightened the risk of MI over a 5 y period, particularly in those lacking mLOY.

    Conclusions:

    Our study highlights the high prevalence of CHIP and mLOY in elderly individuals. Importantly, our results demonstrate that neither CHIP nor mLOY in isolation substantially contributes to inflammation, atherosclerosis, or MI incidence. Furthermore, we find that mLOY does not exert a significant influence on the modulation of inflammation, atherosclerosis burden, or atherothrombotic risk associated with CHIP. However, CHIP may accelerate the occurrence of MI, especially when unaccompanied by mLOY. These findings underscore the complexity of the interplay between CHIP, mLOY, and cardiovascular risk, suggesting that large-scale studies with thousands more patients may be necessary to elucidate subtle correlations.

    Funding:

    This study was supported by the Fondation Cœur & Recherche (the Société Française de Cardiologie), the Fédération Française de Cardiologie, ERA-CVD (« CHEMICAL » consortium, JTC 2019) and the Fondation Université de Bordeaux. The laboratory of Hematology of the University Hospital of Bordeaux benefitted of a convention with the Nouvelle Aquitaine Region (2018-1R30113-8473520) for the acquisition of the Nextseq 550Dx sequencer used in this study.

    Clinical trial number:

    NCT04581057.