KSR1-and ERK-dependent translational regulation of the epithelial-to-mesenchymal transition

  1. Chaitra Rao
  2. Danielle E Frodyma
  3. Siddesh Southekal
  4. Robert A Svoboda
  5. Adrian R Black
  6. Chittibabu Guda
  7. Tomohiro Mizutani
  8. Hans Clevers
  9. Keith R Johnson
  10. Kurt W Fisher
  11. Robert E Lewis  Is a corresponding author
  1. University of Nebraska Medical Center, United States
  2. Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Netherlands

Abstract

The epithelial-to-mesenchymal transition (EMT) is considered a transcriptional process that induces a switch in cells from a polarized state to a migratory phenotype. Here we show that KSR1 and ERK promote EMT-like phenotype through the preferential translation of Epithelial-Stromal Interaction 1 (EPSTI1), which is required to induce the switch from E- to N-cadherin and coordinate migratory and invasive behavior. EPSTI1 is overexpressed in human colorectal cancer (CRC) cells. Disruption of KSR1 or EPSTI1 significantly impairs cell migration and invasion in vitro, and reverses EMT-like phenotype, in part, by decreasing the expression of N-cadherin and the transcriptional repressors of E-cadherin expression, ZEB1 and Slug. In CRC cells lacking KSR1, ectopic EPSTI1 expression restored the E- to N-cadherin switch, migration, invasion, and anchorage-independent growth. KSR1-dependent induction of EMT-like phenotype via selective translation of mRNAs reveals its underappreciated role in remodeling the translational landscape of CRC cells to promote their migratory and invasive behavior.

Data availability

The high-throughput sequencing data have been deposited in the Gene Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE164492).

The following data sets were generated

Article and author information

Author details

  1. Chaitra Rao

    Eppley Institute, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2834-7458
  2. Danielle E Frodyma

    Eppley Institute, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Siddesh Southekal

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Robert A Svoboda

    Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Adrian R Black

    Eppley Institute, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Chittibabu Guda

    Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Tomohiro Mizutani

    Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Hans Clevers

    Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and UMC Utrecht, Utrecht, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. Keith R Johnson

    Department of Oral Biology, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kurt W Fisher

    Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Robert E Lewis

    Eppley Cancer Institute, University of Nebraska Medical Center, Omaha, United States
    For correspondence
    rlewis@unmc.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3616-2971

Funding

Nebraska center for Molecular Target Discovery and Drug Development (P20 GM121316)

  • Robert E Lewis

Fred and Pamela Buffet Cancer Support Grant (P30 CA036727)

  • Robert E Lewis

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Nahum Sonenberg, McGill University, Canada

Version history

  1. Received: January 16, 2021
  2. Accepted: May 9, 2021
  3. Accepted Manuscript published: May 10, 2021 (version 1)
  4. Version of Record published: June 11, 2021 (version 2)

Copyright

© 2021, Rao et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,005
    Page views
  • 254
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Chaitra Rao
  2. Danielle E Frodyma
  3. Siddesh Southekal
  4. Robert A Svoboda
  5. Adrian R Black
  6. Chittibabu Guda
  7. Tomohiro Mizutani
  8. Hans Clevers
  9. Keith R Johnson
  10. Kurt W Fisher
  11. Robert E Lewis
(2021)
KSR1-and ERK-dependent translational regulation of the epithelial-to-mesenchymal transition
eLife 10:e66608.
https://doi.org/10.7554/eLife.66608

Share this article

https://doi.org/10.7554/eLife.66608

Further reading

    1. Cancer Biology
    Wanyoung Lim, Inwoo Hwang ... Sungsu Park
    Research Article

    Chemoresistance is a major cause of treatment failure in many cancers. However, the life cycle of cancer cells as they respond to and survive environmental and therapeutic stress is understudied. In this study, we utilized a microfluidic device to induce the development of doxorubicin-resistant (DOXR) cells from triple negative breast cancer (TNBC) cells within 11 days by generating gradients of DOX and medium. In vivo chemoresistant xenograft models, an unbiased genome-wide transcriptome analysis, and a patient data/tissue analysis all showed that chemoresistance arose from failed epigenetic control of the nuclear protein-1 (NUPR1)/histone deacetylase 11 (HDAC11) axis, and high NUPR1 expression correlated with poor clinical outcomes. These results suggest that the chip can rapidly induce resistant cells that increase tumor heterogeneity and chemoresistance, highlighting the need for further studies on the epigenetic control of the NUPR1/HDAC11 axis in TNBC.

    1. Cancer Biology
    2. Computational and Systems Biology
    Bingrui Li, Fernanda G Kugeratski, Raghu Kalluri
    Research Article

    Non-invasive early cancer diagnosis remains challenging due to the low sensitivity and specificity of current diagnostic approaches. Exosomes are membrane-bound nanovesicles secreted by all cells that contain DNA, RNA, and proteins that are representative of the parent cells. This property, along with the abundance of exosomes in biological fluids makes them compelling candidates as biomarkers. However, a rapid and flexible exosome-based diagnostic method to distinguish human cancers across cancer types in diverse biological fluids is yet to be defined. Here, we describe a novel machine learning-based computational method to distinguish cancers using a panel of proteins associated with exosomes. Employing datasets of exosome proteins from human cell lines, tissue, plasma, serum, and urine samples from a variety of cancers, we identify Clathrin Heavy Chain (CLTC), Ezrin, (EZR), Talin-1 (TLN1), Adenylyl cyclase-associated protein 1 (CAP1), and Moesin (MSN) as highly abundant universal biomarkers for exosomes and define three panels of pan-cancer exosome proteins that distinguish cancer exosomes from other exosomes and aid in classifying cancer subtypes employing random forest models. All the models using proteins from plasma, serum, or urine-derived exosomes yield AUROC scores higher than 0.91 and demonstrate superior performance compared to Support Vector Machine, K Nearest Neighbor Classifier and Gaussian Naive Bayes. This study provides a reliable protein biomarker signature associated with cancer exosomes with scalable machine learning capability for a sensitive and specific non-invasive method of cancer diagnosis.