Intact synapse structure and function after combined knockout of PTPδ, PTPσ and LAR

  1. Javier Emperador-Melero  Is a corresponding author
  2. Giovanni de Nola
  3. Pascal S Kaeser  Is a corresponding author
  1. Harvard Medical School, United States

Abstract

It has long been proposed that Leukocyte common Antigen-Related Receptor Protein Tyrosine Phosphatases (LAR-RPTPs) are cell-adhesion proteins that control synapse assembly. Their synaptic nanoscale localization, however, is not established, and synapse fine structure after knockout of the three vertebrate LAR-RPTPs (PTPδ, PTPσ and LAR) has not been tested. Here, superresolution microscopy reveals that PTPδ localizes to the synaptic cleft precisely apposed to postsynaptic scaffolds of excitatory and inhibitory synapses. We next assessed synapse structure in newly generated triple-conditional knockout mice for PTPδ, PTPσ and LAR, complementing a recent independent study of synapse function after LAR-RPTP ablation (Sclip and Südhof, 2020). While mild effects on synaptic vesicle clustering and active zone architecture were detected, synapse numbers and their overall structure were unaffected, membrane anchoring of the active zone persisted, and vesicle docking and release were normal. Hence, despite their localization at synaptic appositions, LAR-RPTPs are dispensable for presynapse structure and function.

Data availability

Data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Javier Emperador-Melero

    Department of Neurobiology, Harvard Medical School, Boston, United States
    For correspondence
    Javier_EmperadorMelero@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
  2. Giovanni de Nola

    Department of Neurobiology, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Pascal S Kaeser

    Department of Neurobiology, Harvard Medical School, Boston, United States
    For correspondence
    kaeser@hms.harvard.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1558-1958

Funding

National Institute of Mental Health (R01MH113349)

  • Pascal S Kaeser

National Institute of Neurological Disorders and Stroke (R01NS083898)

  • Pascal S Kaeser

Harvard Medical School

  • Pascal S Kaeser

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal experiments were performed according to institutional guidelines of Harvard University, and were in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. The animals were handled according to protocols (protocol number IS00000049) approved by the institutional animal care and use committee (IACUC).

Copyright

© 2021, Emperador-Melero et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,352
    views
  • 242
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Javier Emperador-Melero
  2. Giovanni de Nola
  3. Pascal S Kaeser
(2021)
Intact synapse structure and function after combined knockout of PTPδ, PTPσ and LAR
eLife 10:e66638.
https://doi.org/10.7554/eLife.66638

Share this article

https://doi.org/10.7554/eLife.66638

Further reading

    1. Cell Biology
    Yue Miao, Yongtao Du ... Mei Ding
    Research Article

    The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.

    1. Cancer Biology
    2. Cell Biology
    Kourosh Hayatigolkhatmi, Chiara Soriani ... Simona Rodighiero
    Tools and Resources

    Understanding the cell cycle at the single-cell level is crucial for cellular biology and cancer research. While current methods using fluorescent markers have improved the study of adherent cells, non-adherent cells remain challenging. In this study, we addressed this gap by combining a specialized surface to enhance cell attachment, the FUCCI(CA)2 sensor, an automated image analysis pipeline, and a custom machine learning algorithm. This approach enabled precise measurement of cell cycle phase durations in non-adherent cells. This method was validated in acute myeloid leukemia cell lines NB4 and Kasumi-1, which have unique cell cycle characteristics, and we tested the impact of cell cycle-modulating drugs on NB4 cells. Our cell cycle analysis system, which is also compatible with adherent cells, is fully automated and freely available, providing detailed insights from hundreds of cells under various conditions. This report presents a valuable tool for advancing cancer research and drug development by enabling comprehensive, automated cell cycle analysis in both adherent and non-adherent cells.