Mapping single-cell atlases throughout Metazoa unravels cell type evolution

  1. Alexander J Tarashansky
  2. Jacob M Musser
  3. Margarita Khariton
  4. Pengyang Li
  5. Detlev Arendt
  6. Stephen R Quake
  7. Bo Wang  Is a corresponding author
  1. Stanford University, United States
  2. European Molecular Biology Laboratory, Germany

Abstract

Comparing single-cell transcriptomic atlases from diverse organisms can elucidate the origins of cellular diversity and assist the annotation of new cell atlases. Yet, comparison between distant relatives is hindered by complex gene histories and diversifications in expression programs. Previously, we introduced the self-assembling manifold (SAM) algorithm to robustly reconstruct manifolds from single-cell data (Tarashansky et al., 2019). Here, we build on SAM to map cell atlas manifolds across species. This new method, SAMap, identifies homologous cell types with shared expression programs across distant species within phyla, even in complex examples where homologous tissues emerge from distinct germ layers. SAMap also finds many genes with more similar expression to their paralogs than their orthologs, suggesting paralog substitution may be more common in evolution than previously appreciated. Lastly, comparing species across animal phyla, spanning mouse to sponge, reveals ancient contractile and stem cell families, which may have arisen early in animal evolution.

Data availability

All data analyzed during this study are available through various sources as listed in Supplementary File 1.

The following previously published data sets were used

Article and author information

Author details

  1. Alexander J Tarashansky

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jacob M Musser

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Margarita Khariton

    Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pengyang Li

    Department of Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Detlev Arendt

    Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7833-050X
  6. Stephen R Quake

    Bioengineering, Stanford University, Stanford, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Bo Wang

    Bioengineering, Stanford University, Stanford, United States
    For correspondence
    wangbo@stanford.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8880-1432

Funding

Arnold and Mabel Beckman Foundation (Beckman Young Investigator Award)

  • Bo Wang

National Institutes of Health (1R35GM138061)

  • Bo Wang

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments with and care of mice are performed in accordance with protocols approved by the Institutional Animal Care and Use Committees (IACUC) of Stanford University (protocol approval number 30366).

Reviewing Editor

  1. Alex K Shalek, Broad Institute of MIT and Harvard, United States

Version history

  1. Received: January 26, 2021
  2. Accepted: April 30, 2021
  3. Accepted Manuscript published: May 4, 2021 (version 1)
  4. Version of Record published: May 21, 2021 (version 2)

Copyright

© 2021, Tarashansky et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 10,143
    Page views
  • 1,172
    Downloads
  • 58
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander J Tarashansky
  2. Jacob M Musser
  3. Margarita Khariton
  4. Pengyang Li
  5. Detlev Arendt
  6. Stephen R Quake
  7. Bo Wang
(2021)
Mapping single-cell atlases throughout Metazoa unravels cell type evolution
eLife 10:e66747.
https://doi.org/10.7554/eLife.66747

Further reading

    1. Computational and Systems Biology
    2. Ecology
    Vanessa Rossetto Marcelino
    Insight

    High proportions of gut bacteria that produce their own food can be an indicator for poor gut health.

    1. Computational and Systems Biology
    2. Neuroscience
    Huu Hoang, Shinichiro Tsutsumi ... Keisuke Toyama
    Research Article

    Cerebellar climbing fibers convey diverse signals, but how they are organized in the compartmental structure of the cerebellar cortex during learning remains largely unclear. We analyzed a large amount of coordinate-localized two-photon imaging data from cerebellar Crus II in mice undergoing 'Go/No-go' reinforcement learning. Tensor component analysis revealed that a majority of climbing fiber inputs to Purkinje cells were reduced to only four functional components, corresponding to accurate timing control of motor initiation related to a Go cue, cognitive error-based learning, reward processing, and inhibition of erroneous behaviors after a No-go cue. Changes in neural activities during learning of the first two components were correlated with corresponding changes in timing control and error learning across animals, indirectly suggesting causal relationships. Spatial distribution of these components coincided well with boundaries of Aldolase-C/zebrin II expression in Purkinje cells, whereas several components are mixed in single neurons. Synchronization within individual components was bidirectionally regulated according to specific task contexts and learning stages. These findings suggest that, in close collaborations with other brain regions including the inferior olive nucleus, the cerebellum, based on anatomical compartments, reduces dimensions of the learning space by dynamically organizing multiple functional components, a feature that may inspire new-generation AI designs.