1. Cancer Biology
  2. Developmental Biology
Download icon

An NKX2-1/ERK/WNT feedback loop modulates gastric identity and response to targeted therapy in lung adenocarcinoma

Research Article
  • Cited 0
  • Views 222
  • Annotations
Cite this article as: eLife 2021;10:e66788 doi: 10.7554/eLife.66788

Abstract

Cancer cells undergo lineage switching during natural progression and in response to therapy. NKX2-1 loss in human and murine lung adenocarcinoma leads to invasive mucinous adenocarcinoma (IMA), a lung cancer subtype that exhibits gastric differentiation and harbors a distinct spectrum of driver oncogenes. In murine BRAFV600E driven lung adenocarcinoma, NKX2-1 is required for early tumorigenesis, but dispensable for established tumor growth. NKX2-1-deficient, BRAFV600E driven tumors resemble human IMA and exhibit a distinct response to BRAF/MEK inhibitors. Whereas BRAF/MEK inhibitors drive NKX2-1-positive tumor cells into quiescence, NKX2-1-negative cells fail to exit the cell cycle after the same therapy. BRAF/MEK inhibitors induce cell identity switching in NKX2-1-negative lung tumors within the gastric lineage, which is driven in part by WNT signaling and FoxA1/2. These data elucidate a complex, reciprocal relationship between lineage specifiers and oncogenic signaling pathways in the regulation of lung adenocarcinoma identity that is likely to impact lineage-specific therapeutic strategies.

Article and author information

Author details

  1. Rediet Zewdu

    Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Elnaz Mirzaei Mehrabad

    School of Computing, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Kelley Ingram

    Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Pengshu Fang

    Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Katherine L Gillis

    Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Soledad A Camolotto

    Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Grace Orstad

    Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Alex Jones

    Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Michelle C Mendoza

    Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6490-1794
  10. Benjamin T Spike

    Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Eric L Snyder

    Department of Pathology and Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, United States
    For correspondence
    eric.snyder@hci.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3591-3195

Funding

V Foundation for Cancer Research (V Scholar Award)

  • Eric L Snyder

Burroughs Wellcome Fund (Career Award for Medical Scientists)

  • Eric L Snyder

National Cancer Institute (R01CA212415)

  • Eric L Snyder

National Cancer Institute (R01CA240317)

  • Eric L Snyder

National Cancer Institute (F31CA243427)

  • Grace Orstad

Lung Cancer Center, Huntsman Cancer Institute (Pilot Project Award)

  • Benjamin T Spike
  • Eric L Snyder

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal work was done in accordance with a protocol (#18-08005) approved by the University of Utah Institutional Animal Care and Use Committee.

Reviewing Editor

  1. Maureen E Murphy, The Wistar Institute, United States

Publication history

  1. Received: January 22, 2021
  2. Accepted: April 5, 2021
  3. Accepted Manuscript published: April 6, 2021 (version 1)

Copyright

© 2021, Zewdu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 222
    Page views
  • 46
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Cancer Biology
    2. Evolutionary Biology
    Juan M Vazquez, Vincent J Lynch
    Research Article Updated

    The risk of developing cancer is correlated with body size and lifespan within species. Between species, however, there is no correlation between cancer and either body size or lifespan, indicating that large, long-lived species have evolved enhanced cancer protection mechanisms. Elephants and their relatives (Proboscideans) are a particularly interesting lineage for the exploration of mechanisms underlying the evolution of augmented cancer resistance because they evolved large bodies recently within a clade of smaller-bodied species (Afrotherians). Here, we explore the contribution of gene duplication to body size and cancer risk in Afrotherians. Unexpectedly, we found that tumor suppressor duplication was pervasive in Afrotherian genomes, rather than restricted to Proboscideans. Proboscideans, however, have duplicates in unique pathways that may underlie some aspects of their remarkable anti-cancer cell biology. These data suggest that duplication of tumor suppressor genes facilitated the evolution of increased body size by compensating for decreasing intrinsic cancer risk.

    1. Cancer Biology
    Yogev Sela et al.
    Short Report Updated

    Cancer patients often harbor occult metastases, a potential source of relapse that is targetable only through systemic therapy. Studies of this occult fraction have been limited by a lack of tools with which to isolate discrete cells on spatial grounds. We developed PIC-IT, a photoconversion-based isolation technique allowing efficient recovery of cell clusters of any size – including single-metastatic cells – which are largely inaccessible otherwise. In a murine pancreatic cancer model, transcriptional profiling of spontaneously arising microcolonies revealed phenotypic heterogeneity, functionally reduced propensity to proliferate and enrichment for an inflammatory-response phenotype associated with NF-κB/AP-1 signaling. Pharmacological inhibition of NF-κB depleted microcolonies but had no effect on macrometastases, suggesting microcolonies are particularly dependent on this pathway. PIC-IT thus enables systematic investigation of metastatic heterogeneity. Moreover, the technique can be applied to other biological systems in which isolation and characterization of spatially distinct cell populations is not currently feasible.