Precise optical control of gene expression in C. elegans using improved genetic code expansion and Cre recombinase

  1. Lloyd Davis
  2. Inja Radman
  3. Angeliki Goutou
  4. Ailish Tynan
  5. Kieran Baxter
  6. Zhiyan Xi
  7. Jack M O'Shea
  8. Jason W Chin  Is a corresponding author
  9. Sebastian Greiss  Is a corresponding author
  1. University of Edinburgh, United Kingdom
  2. MRC Laboratory of Molecular Biology, United Kingdom
  3. Medical Research Council Laboratory of Molecular Biology, United Kingdom

Abstract

Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in C. elegans and use it to create a photo-activatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted.

Data availability

All data are included in the manuscript and supporting files. Sequences used for generating transgenic constructs are listed in the supporting files.

Article and author information

Author details

  1. Lloyd Davis

    Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Inja Radman

    Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Angeliki Goutou

    Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Ailish Tynan

    Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Kieran Baxter

    Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Zhiyan Xi

    Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Jack M O'Shea

    Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9694-7340
  8. Jason W Chin

    Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
    For correspondence
    chin@mrc-lmb.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  9. Sebastian Greiss

    Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    s.greiss@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9130-0831

Funding

H2020 European Research Council (ERC-StG-679990)

  • Sebastian Greiss

Medical Research Council (MC_U105181009)

  • Jason W Chin

Medical Research Council (MC_UP_A024_1008)

  • Jason W Chin

Wellcome-Trust University of Edinburgh Institutional Strategic Support Fund ISS2

  • Sebastian Greiss

The Royal Society

  • Sebastian Greiss

Muir Maxwell Epilepsy Centre

  • Sebastian Greiss

Louis Jeantet Foundation

  • Jason W Chin

Herchel Smith Foundation

  • Inja Radman

University of Edinburgh, Edinburgh Global Award and Principal's Career Development PhD studentship

  • Zhiyan Xi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2021, Davis et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,889
    views
  • 473
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lloyd Davis
  2. Inja Radman
  3. Angeliki Goutou
  4. Ailish Tynan
  5. Kieran Baxter
  6. Zhiyan Xi
  7. Jack M O'Shea
  8. Jason W Chin
  9. Sebastian Greiss
(2021)
Precise optical control of gene expression in C. elegans using improved genetic code expansion and Cre recombinase
eLife 10:e67075.
https://doi.org/10.7554/eLife.67075

Share this article

https://doi.org/10.7554/eLife.67075

Further reading

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Mai Nguyen, Elda Bauda ... Cecile Morlot
    Research Article

    Teichoic acids (TA) are linear phospho-saccharidic polymers and important constituents of the cell envelope of Gram-positive bacteria, either bound to the peptidoglycan as wall teichoic acids (WTA) or to the membrane as lipoteichoic acids (LTA). The composition of TA varies greatly but the presence of both WTA and LTA is highly conserved, hinting at an underlying fundamental function that is distinct from their specific roles in diverse organisms. We report the observation of a periplasmic space in Streptococcus pneumoniae by cryo-electron microscopy of vitreous sections. The thickness and appearance of this region change upon deletion of genes involved in the attachment of TA, supporting their role in the maintenance of a periplasmic space in Gram-positive bacteria as a possible universal function. Consequences of these mutations were further examined by super-resolved microscopy, following metabolic labeling and fluorophore coupling by click chemistry. This novel labeling method also enabled in-gel analysis of cell fractions. With this approach, we were able to titrate the actual amount of TA per cell and to determine the ratio of WTA to LTA. In addition, we followed the change of TA length during growth phases, and discovered that a mutant devoid of LTA accumulates the membrane-bound polymerized TA precursor.

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    Shinichi Kawaguchi, Xin Xu ... Toshie Kai
    Research Article

    Protein–protein interactions are fundamental to understanding the molecular functions and regulation of proteins. Despite the availability of extensive databases, many interactions remain uncharacterized due to the labor-intensive nature of experimental validation. In this study, we utilized the AlphaFold2 program to predict interactions among proteins localized in the nuage, a germline-specific non-membrane organelle essential for piRNA biogenesis in Drosophila. We screened 20 nuage proteins for 1:1 interactions and predicted dimer structures. Among these, five represented novel interaction candidates. Three pairs, including Spn-E_Squ, were verified by co-immunoprecipitation. Disruption of the salt bridges at the Spn-E_Squ interface confirmed their functional importance, underscoring the predictive model’s accuracy. We extended our analysis to include interactions between three representative nuage components—Vas, Squ, and Tej—and approximately 430 oogenesis-related proteins. Co-immunoprecipitation verified interactions for three pairs: Mei-W68_Squ, CSN3_Squ, and Pka-C1_Tej. Furthermore, we screened the majority of Drosophila proteins (~12,000) for potential interaction with the Piwi protein, a central player in the piRNA pathway, identifying 164 pairs as potential binding partners. This in silico approach not only efficiently identifies potential interaction partners but also significantly bridges the gap by facilitating the integration of bioinformatics and experimental biology.