T cell receptor (TCR) signaling promotes the assembly of RanBP2/RanGAP1-SUMO1/Ubc9 nuclear pore subcomplex via PKC-θ-mediated phosphorylation of RanGAP1

  1. Yujiao He
  2. Zhiguo Yang
  3. Chen-si Zhao
  4. Zhihui Xiao
  5. Yu Gong
  6. Yun-Yi Li
  7. Yiqi Chen
  8. Yunting Du
  9. Dianying Feng
  10. Amnon Altman
  11. Yingqiu Li  Is a corresponding author
  1. Sun Yat-Sen University, China
  2. La Jolla Institute for Immunology, United States

Abstract

The nuclear pore complex (NPC) is the sole and selective gateway for nuclear transport and its dysfunction has been associated with many diseases. The metazoan NPC subcomplex RanBP2, which consists of RanBP2 (Nup358), RanGAP1-SUMO1 and Ubc9, regulates the assembly and function of the NPC. The roles of immune signaling in regulation of NPC remain poorly understood. Here, we show that in human and murine T cells, following TCR stimulation, protein kinase C-θ (PKC-θ) directly phosphorylates RanGAP1 to facilitate RanBP2 subcomplex assembly and nuclear import and, thus, the nuclear translocation of AP-1 transcription factor. Mechanistically, TCR stimulation induces the translocation of activated PKC-θ to the NPC, where it interacts with and phosphorylates RanGAP1 on Ser504 and Ser506. RanGAP1 phosphorylation increases its binding affinity for Ubc9, thereby promoting sumoylation of RanGAP1 and, finally, assembly of the RanBP2 subcomplex. Our findings reveal an unexpected role of PKC-θ as a direct regulator of nuclear import and uncover a phosphorylation-dependent sumoylation of RanGAP1, delineating a novel link between TCR signaling and assembly of the RanBP2 NPC subcomplex.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Yujiao He

    Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  2. Zhiguo Yang

    Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  3. Chen-si Zhao

    Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  4. Zhihui Xiao

    Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yu Gong

    Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  6. Yun-Yi Li

    Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  7. Yiqi Chen

    Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  8. Yunting Du

    Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  9. Dianying Feng

    Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
    Competing interests
    The authors declare that no competing interests exist.
  10. Amnon Altman

    Center for Cancer Immunotherapy, La Jolla Institute for Immunology, La Jolla, CA 92037, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Yingqiu Li

    Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
    For correspondence
    lsslyq@mail.sysu.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3206-5231

Funding

National Natural Science Foundation of China (31670893)

  • Yingqiu Li

National Natural Science Foundation of China (31370886)

  • Yingqiu Li

National Natural Science Foundation of China (31170846)

  • Yingqiu Li

Guangzhou Science and Technology Project (201904010445)

  • Yingqiu Li

Guangdong provincial natural science foundation (2021A1515010543)

  • Yingqiu Li

Guangdong Science and Technology Department (2020B1212060031)

  • Yingqiu Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the Sun Yat-Sen University. All of the animals were handled according to guidelines approved by the Animal Care and Ethics committee of Sun Yat-Sen University. The protocol was approved by the Committee on the Ethics of Animal Experiments of Sun Yat-Sen University (Permit Number: SYSU-IACUC-2019-B616) . The mice were euthanatized by CO2 from compressed gas cylinders, and we complied with all the ethical regulation.

Reviewing Editor

  1. Juan Carlos Zúñiga-Pflücker, University of Toronto, Sunnybrook Research Institute, Canada

Publication history

  1. Received: February 1, 2021
  2. Accepted: June 3, 2021
  3. Accepted Manuscript published: June 10, 2021 (version 1)
  4. Version of Record published: June 24, 2021 (version 2)
  5. Version of Record updated: June 28, 2021 (version 3)

Copyright

© 2021, He et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,471
    Page views
  • 218
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Yujiao He
  2. Zhiguo Yang
  3. Chen-si Zhao
  4. Zhihui Xiao
  5. Yu Gong
  6. Yun-Yi Li
  7. Yiqi Chen
  8. Yunting Du
  9. Dianying Feng
  10. Amnon Altman
  11. Yingqiu Li
(2021)
T cell receptor (TCR) signaling promotes the assembly of RanBP2/RanGAP1-SUMO1/Ubc9 nuclear pore subcomplex via PKC-θ-mediated phosphorylation of RanGAP1
eLife 10:e67123.
https://doi.org/10.7554/eLife.67123

Further reading

    1. Cell Biology
    Florian Geisler, Sanne Remmelzwaal ... Rudolf E Leube
    Research Article

    Intermediate filaments (IFs) are major components of the metazoan cytoskeleton. A long-standing debate concerns the question whether IF network organization only reflects or also determines cell and tissue function. Using C. elegans, we have recently described mutants of the MAPK SMA-5 which perturb the organization of the intestinal IF cytoskeleton resulting in luminal widening and cytoplasmic invaginations. Besides these structural phenotypes, systemic dysfunctions were also observed. We now identify the IF polypeptide IFB-2 as a highly efficient suppressor of both the structural and functional deficiencies of sma-5 animals, by removing the aberrant IF network. Mechanistically, perturbed IF network morphogenesis is linked to hyperphosphorylation of multiple sites throughout the entire IFB-2 molecule. The rescuing capability is IF isotype-specific and not restricted to SMA-5 mutants but extends to mutants that disrupt the function of the cytoskeletal linker IFO-1 and the IF-associated protein BBLN1. The findings provide strong evidence for adverse consequences of the deranged IF networks with implications for diseases that are characterized by altered IF network organization.

    1. Cell Biology
    Justin Krish Williams, Jordan Matthew Ngo ... Randy Schekman
    Research Article Updated

    Exosomes are an extracellular vesicle (EV) subtype that is secreted upon the fusion of multivesicular bodies (MVBs) with the plasma membrane. Exosomes may participate in intercellular communication and have utility as disease biomarkers; however, little is known regarding the physiological stimuli that induce their secretion. Ca2+ influx promotes exosome secretion, raising the possibility that exosomes are secreted during the Ca2+-dependent plasma membrane repair of tissues damaged by mechanical stress in vivo. To determine whether exosomes are secreted upon plasma membrane damage, we developed sensitive assays to measure exosome secretion in intact and permeabilized cells. Our results suggest that exosome secretion is coupled to Ca2+-dependent plasma membrane repair. We find that annexin A6 (ANXA6), a well-known plasma membrane repair protein, is recruited to MVBs in the presence of Ca2+ and required for Ca2+-dependent exosome secretion, both in intact and in permeabilized cells. ANXA6 depletion stalls MVBs at the cell periphery, and ANXA6 truncations localize to different membranes, suggesting that ANXA6 may serve to tether MVBs to the plasma membrane. We find that cells secrete exosomes and other EVs upon plasma membrane damage and propose that repair-induced secretion may contribute to the pool of EVs present within biological fluids.